研究生: |
游珮詩 Yu, Pei-Shih |
---|---|
論文名稱: |
非理工科系大學生在科學新聞中的統計素養之初探研究 An Exploratory Study on Non-Science-Major College Students' Statistical Literacy for Science News |
指導教授: |
顏妙璇
Yen, Miao-Hsuan |
口試委員: |
吳穎沺
Wu, Ying-Tien 林志鴻 Lin, John-Jr-Hung 顏妙璇 Yen, Miao-Hsuan |
口試日期: | 2022/08/08 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 統計素養 、科學新聞 |
英文關鍵詞: | Statistical Literacy, Science News |
研究方法: | 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201649 |
論文種類: | 學術論文 |
相關次數: | 點閱:110 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著大數據時代的發展,各領域在分享資訊時也會使用大量的統計訊息,現代社會的公民能否正確判讀統計資料傳達的訊息相當重要。本研究針對非理工科系大學生了解其閱讀科學新聞文本時,統計素養相關先備知識、CARE統計素養教學指引的學習成效、以及大學時期是否修習統計相關課程對統計素養的影響。研究工具的設計係根據Schield(2010)提出影響統計值需要注意(CARE)的四個面向:「Context變項的脈絡」、「Assembly變項的集合」、「Randomness隨機性」與「Error偏差」,改編成科學新聞中常見的8項統計素養測驗題型與教學概念,分析34位非理工科系大學生在CARE統計素養教學指引前後,統計素養能力的改變。
研究結果顯示:(1)非理工科系大學生的統計素養前測中,面對科學新聞中的抽樣偏差與機率的解讀較無問題,但是需要計算的基準值差異以及牽涉到統計學專業名詞的隨機性與混淆變項等三題型,受試者感受到較大的困難。而受試者是否修習統計相關課程分組中,基準值差異與比較類型的選擇兩題型,有修組的表現顯著高於沒修組。(2)教學任務的學習表現上與前測結果相同,受試者需要花較多的心力理解基準值差異、隨機性與混淆變項三個概念。是否修習統計的分組分析與前測結果相同,有修組在基準值差異與比較類型的選擇兩題型顯著高於沒修組。(3)受試者的後測表現與前兩階段表現不同,在面對科學新聞裡的題型,比例的比較與基準值差異題型較難對比教學指引,無法順利解讀語句埋藏的錯誤而使表現下降。受試者是否修習統計的分組則是皆無顯著差異;受試者學習成效在基準值差異、混淆變項、隨機性與偏差共四個題型的後測分數顯著高於前測分數,經過教學任務的指引後,受試者更能掌握科學新聞文本中的埋錯並更正。
With the development of big data, a large amount of statistical information is used when sharing information. It is important for citizens in the modern society to correctly interpret the information conveyed by statistical data. This study explored statistical literacy of non-science-major college students when they read science news. Prior knowledge about statistical literacy, learning outcomes of CARE statistical literacy guidelines, and the influence of whether students take statistics-related courses in college on these measures were examined in this study. The instruments were developed based on Schield (2010), in which factors that influence the interpretation of statistical data were classified into four categories: context, assembly, randomness and error (CARE). We adapted these four factors to create 8 items which are common in science news for statistical literacy test items and concepts to be learned.
The results of this study are described as follows. In the pre-test for statistical literacy, non-science-major college students understood the concept of sampling bias and the meaning of probability in science news. But students experienced great difficulties in items concerning baseline value, randomness, and confounding variables. Whether students take statistics-related courses in college resulted in significant differences in items about baseline value and comparison choice. Comprehension levels during instruction were similar to the patterns found in the pre-test. In the post-test, students did not preform well in items about comparison of proportion and baseline value. There was no significant differences between students taking statistics-related courses in college or not. The post-test scores were significantly higher than the pre-test scores in the following four types of questions: baseline value, confounding variables, randomness and errors. After being guided by CARE statisitical literacy guidelines, students were better able to detect and correct errors in statistical information mentioned in science news.
Ben‐Zvi, D., & Garfield, J. (2008). Introducing the emerging discipline of statistics education. School Science and Mathematics, 108(8), 355-361.
Dieckmann, N. F., Slovic, P., & Peters, E. M. (2009). The use of narrative evidence and explicit likelihood by decisionmakers varying in numeracy. Risk Analysis: An International Journal, 29(10), 1473-1488.
Frankenstein, M. (2009). Developing a criticalmathematical numeracy through real real-life word problems. In Words and worlds (pp. 111-130). Brill Sense.
Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic perspectives, 19(4), 25-42.
Gal, I. (2002a). Statistical literacy: Conceptual and instructional issues. Perspectives on adults learning mathematics: Research and practice, 135-150.
Gal, I. (2002b). Adults' statistical literacy: Meanings, components, responsibilities. International statistical review, 70(1), 1-25.
Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy for social justice. Taylor & Francis.
Gutstein, E., & Peterson, B. (Eds.). (2005). Rethinking mathematics: Teaching social justice by the numbers. Rethinking Schools.
Holmes, P. (2003). Statistical Literacy, Numeracy and the Future. Augsburg College, Minneapolis, MI, 31.
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological review, 87(4), 329.
Knouse, S. B. (1983). The letter of recommendation: Specificity and favorability of information. Personnel Psychology, 36(2), 331-341.
Lehohla, P. (2002). Promoting statistical literacy: A South African perspective.
Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy scale among highly educated samples. Medical decision making, 21(1), 37-44.
Peters, E. (2012). Beyond comprehension: The role of numeracy in judgments and decisions. Current Directions in Psychological Science, 21(1), 31-35.
Peters, E., Västfjäll, D., Slovic, P., Mertz, C. K., Mazzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological science, 17(5), 407-413.
Raymond, R., & Schield, M. (2008). Numbers in the news: A survey. In Proceedings of the ASA Section on Statistical Education (Vol. 9).
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.
Reston, E. D. (2005). Assessing Statistical Literacy in Graduate Level Statistics Education. Paper presented at the 55. In th Session of the International Statistical Institute.
Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. Psychological bulletin, 135(6), 943.
Schield, M. (1999). Statistical literacy: Thinking critically about statistics. Of Significance, 1(1), 15-20.
Schield, M. (2004). Statistical literacy curriculum design. IASE Curriculum Design Roundtable. See www. StatLit. org/pdf/2004SchieldIASE. pdf.
Shields, M. (2005). Information literacy, statistical literacy, data literacy. IASSIST quarterly, 28(2-3), 6-6.
Schield, M. (2006). Statistical literacy survey analysis: Reading graphs and tables of rates and percentages. Paper presented at the seventh International Conference on Teaching Statistics, Brazil.
Schield, M., & Schield, C. (2007). Numbers in the news: A survey. In Proceedings of the ASA Section on Statistical Education (pp. 2323-2328).
Schield, M. (2008). Quantitative literacy and school mathematics: Percentages and fractions. Calculation vs. context: Quantitative literacy and its implications for teacher education, 87-107.
Schield, M. (2010). Assessing statistical literacy: Take CARE. Assessment methods in statistical education: An international perspective, 133-152.
Schwartz, L. M., Woloshin, S., Black, W. C., & Welch, H. G. (1997). The role of numeracy in understanding the benefit of screening mammography. Annals of internal medicine, 127(11), 966-972.
Snell, L. (1999). Using chance media to promote statistical literacy. In Joint Statistical Meetings, Dallas, TX.
Ullmann, P. (2016). Communicating evidence? On the interaction of politics, data and the public. In Promoting Understanding of Statistics about Society: Proceedings of the Roundtable Conference of the International Association of Statistics Education.
Viswanathan, M., & Childers, T. L. (1996). Processing of numerical and verbal product information. Journal of Consumer Psychology, 5(4), 359-385.
Wallman, K. K. (1993). Enhancing statistical literacy: Enriching our society. Journal of the American Statistical Association, 88(421), 1-8.
Watson, J. M. (1997). Assessing statistical thinking using the media. The assessment challenge in statistics education, 12, 107-121.
Watson, J., & Callingham, R. (2003). Statistical literacy: A complex hierarchical construct. Statistics Education Research Journal, 2(2), 3-46.
Watson, J. M., Collis, K., & Moritz, J. (1994). Authentic assessment in statistics using the media. Report prepared for the National Center for Research in Mathematical Sciences Education-Models of Authentic Assessment Working Group (University of Wisconsin). Hobart, Australia: University of Tasmania, School of Education.
Weiland, T. (2017). Problematizing statistical literacy: An intersection of critical and statistical literacies. Educational Studies in Mathematics, 96(1), 33-47.
Wild, C., Triggs, C., & Pfannkuch, M. (1997). Assessment on a budget: Using traditional methods imaginatively. In The Assessment Challenge in Statistics Education, Eds. I. Gal and J.B. Garfield. Amsterdam : IOS Press.
Yalch, R. F., & Elmore-Yalch, R. (1984). The effect of numbers on the route to persuasion. Journal of Consumer Research, 11(1), 522-527.
陳展興(2015)。國小職前教師統計素養─以南部某國立大學為例。國立臺南大學應用數學系數學科教學碩士班碩士論文(未出版)。
翁意茹(2006)。依據國小統計教材探討職前教師之統計素養-以國立臺北教育大學為例。國立臺北教育大學數學教育研究所碩士論文(未出版)。
黃俊儒、簡妙如(2006)。科學新聞文本的論述層次及結構分佈:構思另個科學傳播的起點。新聞學研究,(86),135-170。
黃俊儒、簡妙如(2008)。「科學家發明了什麼?!」--解析學生對於科學新聞中的科技產物意象。科學教育學刊,(16:4),415-438。
曾瑞玫(2009)。高中學生統計素養表現之探討。國立花蓮教育大學數學系碩士論文(未出版)。
楊靜惠(2006)。九年一貫數學課程實施下北部地區中學生統計素養之探究-以九年級為例。國立臺北教育大學數學教育研究所碩士論文(未出版)。
趙于甯(2011)。大學生統計素養測驗與統計態度量表之發展及其相關研究。國立臺南大學測驗統計研究所碩士論文(未出版)。
塑料污染:鯨魚的痛苦你應該懂(2018年2月7日)。BBC News 中文。取自:https://www.bbc.com/zhongwen/trad/science-42946353
Richard Thompson(2018年2月7日)。海洋生物誤食塑膠垃圾或纏死近十年增四成。環境資訊中心。取自:https://e-info.org.tw/node/94154
洪巧藍(2019年5月24日)。台大研究:塑化劑無所不在!國小教室內外都測得...也傷心血管。ETtoday健康雲。取自:https://health.ettoday.net/news/1451728
李柏昱(2013年5月14日)。你快樂嗎?空氣污染影響我們的幸福感受。PanSci 泛科學。取自:https://pansci.asia/archives/54514
台灣PM2.5的主要污染來源(2018年9月14日)。台塑企業 熱門議題。取自:https://www.fpg.com.tw/tw/issue/1/115
空氣污染防制大作戰—保護國人健康,讓臺灣環境永續(2020年10月14日)。行政院 政策與計畫。取自:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/23c411a0-1b20-42e7-9843-daf6cdedc61b