簡易檢索 / 詳目顯示

研究生: 楊程謙
Yang, Cheng-Chien
論文名稱: 穿隧式薄膜磁場感測系統於遠距磁性金屬檢測之應用與研究
Application of Tunneled Thin-Film Magnetic Field Sensing System for Remote Detection of Magnetic Metals
指導教授: 廖書賢
Liao, Shu-Hsien
口試委員: 廖書賢
Liao, Shu-Hsien
王立民
Wang, Li-Min
陳坤麟
Chen, Kun-Lin
口試日期: 2024/07/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 52
中文關鍵詞: 穿隧式磁阻地下金屬檢測瞬變時域系統
英文關鍵詞: TMR, TEM, Underground Metal Detection
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401445
論文種類: 學術論文
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 I 摘要 II Abstract IV 目次 VII 圖次 IX 第一章 緒論 1 1.1 地下金屬探測的概述 1 1.1.1 地下金屬探測發展 1 1.1.2 地下金屬探測類別 2 1.1.3 TEM系統的優勢 3 1.1.4 磁感測器優勢 4 1.2 磁感測器介紹 5 1.2.1 磁感測器類別 5 1.2.2 隧道磁阻 7 1.2.3 自旋磁阻 7 1.3 研究動機 8 第二章 實驗原理 9 2.1 TMR、MTJ原理與介紹 9 2.1.1 MTJ結構 9 2.1.2 磁滯效應 10 2.1.3 自旋極化穿隧與TMR效應 11 2.1.4 Julliere model 12 2.2 鐵磁性及順磁介紹 14 2.2.1 鐵磁性以及順磁性介紹 14 2.2.2 被磁化物體於磁場中分佈 16 2.3 載流導線產生的磁場 17 2.3.1 必歐-沙伐定律 17 第三章 實驗方法及架構 19 3.1 實驗系統介紹 19 3.1.1 TMR規格 19 3.1.2 TMR磁場掃瞄系統 21 3.1.3 MTJ交流調製場 22 3.2 激發與補償線圈介紹 24 3.2.1 激發線圈介紹 24 3.2.2 反向補償線圈 26 3.2.3 線圈平衡設置 26 3.3 量測模式簡介 29 3.4 模擬偶極矩 31 第四章 實驗結果 33 4.1 AC調製中的TMR sensor 33 4.1.1 電壓磁場轉換比 34 4.2 量測與模擬 35 4.2.1 極限量測距離探討 35 4.2.2 實際掃描待測物 39 4.2.3 實體量測與模擬 42 第五章 結論 47 未來展望 48 參考資料 49

    [1] Robledo, L., Carrasco, M., & Mery, D. (2009). A survey of land mine detection technology. International Journal of Remote Sensing, 30(9), 2399-2410.
    [2] T. H. Bell, B. J. Barrow and J. T. Miller, "Subsurface discrimination using electromagnetic induction sensors," in IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 6, pp. 1286-1293, June 2001, doi: 10.1109/36.927451.
    [3] L. ROBLEDO*, M. CARRASCO and D. MERY Pontificia Universidad Cato´lica de Chile, Computer Science Department, Vicun˜a Mackena 4860, Macul, Santiago, 7820436, Chile
    [4] Annan, A. P. "GPR—History, trends, and future developments." Subsurface sensing technologies and applications 3.4 (2002): 253-270.
    [5] Baker, G. S., Jordan, T. E., & Pardy, J. (2007). An introduction to ground penetrating radar (GPR).
    [6] Wang, H.; Chen, S.; Zhang, S.; Yuan, Z.; Zhang, H.; Fang, D.; Zhu, J. A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection. Sensors 2017, 17, 2651.
    [7] J. E. Lenz, "A review of magnetic sensors," in Proceedings of the IEEE, vol. 78, no. 6, pp. 973-989, June 1990, doi: 10.1109/5.56910. keywords: {Magnetic sensors; Magnetic fields; Coils; Optical pumping; Optical sensors; SQUIDs; Magnetoresistance; Optical fibers; Earth; Magnetic switching},
    [8] Včelák, J., P. Ripka, and A. Zikmund. "Precise magnetic sensors for navigation and prospection." Journal of Superconductivity and Novel Magnetism 28 (2015): 1077-1080.
    [9] Hott, Maurice, Peter A. Hoeher, and Sebastian F. Reinecke. "Magnetic communication using high-sensitivity magnetic field detectors." Sensors 19.15 (2019): 3415.
    [10] Lenz, James, and S. Edelstein. "Magnetic sensors and their applications." IEEE Sensors journal 6.3 (2006): 631-649.
    [11] S. Yan, Z. Zhou, Y. Yang, Q. Leng and W. Zhao, "Developments and applications of tunneling magnetoresistance sensors," in Tsinghua Science and Technology, vol. 27, no. 3, pp. 443-454, June 2022, doi: 10.26599/TST.2021.9010061.
    [12] Butler, W. H., et al. "Spin-dependent tunneling conductance of Fe| MgO| Fe sandwiches." Physical Review B 63.5 (2001): 054416.
    [13] Mathon, J., and A. Umerski. "Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction." Physical Review B 63.22 (2001): 220403.
    [14] Bowen, M., et al. "Large magnetoresistance in Fe/MgO/FeCo (001) epitaxial tunnel junctions on GaAs (001)." Applied Physics Letters 79.11 (2001): 1655-1657.
    [15] Yuasa, Shinji, et al. "Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions." Nature materials 3.12 (2004): 868-871.
    [16] Parkin, Stuart SP, et al. "Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers." Nature materials 3.12 (2004): 862-867.
    [17] Baibich, Mario Norberto, et al. "Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices." Physical review letters 61.21 (1988): 2472.
    [18] Moodera, Jagadeesh Subbaiah, et al. "Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions." Physical review letters 74.16 (1995): 3273.
    [19] Berkowitz, A. E., and Kentaro Takano. "Exchange anisotropy—a review." Journal of Magnetism and Magnetic materials 200.1-3 (1999): 552-570.
    [20] Meiklejohn, William H., and Charles P. Bean. "New magnetic anisotropy." Physical review 102.5 (1956): 1413.
    [21] Meservey, Robert, and P. M. Tedrow. "Spin-polarized electron tunneling." Physics reports 238.4 (1994): 173-243.
    [22] Julliere, Michel. "Tunneling between ferromagnetic films." Physics letters A 54.3 (1975): 225-226.
    [23] Kaufman, Alex A., Richard O. Hansen, and Robert LK Kleinberg. "Paramagnetism, Diamagnetism, and Ferromagnetism." Methods in geochemistry and geophysics 42 (2008): 207-254.
    [24] M. L. Hodgdon, "Applications of a theory of ferromagnetic hysteresis," in IEEE Transactions on Magnetics, vol. 24, no. 1, pp. 218-221, Jan. 1988, doi: 10.1109/20.43893. keywords: {Magnetic hysteresis; Magnetic materials; Differential equations; Ferrites; Laboratories; Transistors; Magnetic fields; Constraint theory; Soft magnetic materials; Permeability}.
    [25]Han-Sheng Huang ,Shu-Hsien Liao, Yi Yang,Andrei Sokol, IEEE Transactions on Magnetics ( Volume: 58, Issue: 2, February 2022)
    [26]Shaohua Yan, Zitong Zhou, Yaodi Yang; Qunwen Leng, Tsinghua Science and Technology ( Volume: 27, Issue: 3, June 2022)
    [27]S. H. Liou et al., "Picotesla Magnetic Sensors for Low-Frequency Applications," in IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3740-3743, Oct. 2011, doi: 10.1109/TMAG.2011.2157997
    [28] H. -S. Huang et al., "A Study of Hysteresis Reduction of Small AC Magnetic Field Modulated Tunneling Magnetoresistive Sensor," in IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-4, Feb. 2022, Art no. 4001004, doi: 10.1109/TMAG.2021.3085095.
    [29] Wang, Haofeng, et al. "A high-performance portable transient electro-magnetic sensor for unexploded ordnance detection." Sensors 17.11 (2017): 2651.

    無法下載圖示 本全文未授權公開
    QR CODE