簡易檢索 / 詳目顯示

研究生: 賴昱呈
Lai,Yu-Cheng
論文名稱: 利用原子力顯微鏡觀測並分析紫色細胞膜的表面物性
Imaging and analyzing the surface properties of purple membrane by AFM
指導教授: 傅祖怡
Fu,Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 51
中文關鍵詞: 紫色細胞膜原子力顯微鏡
論文種類: 學術論文
相關次數: 點閱:199下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

紫色細胞膜(PM)是由 細菌視紫紅質 (BR)和許多種類的脂質所組成的二維結構,受到光照後能單一方向將質子從胞內傳遞至胞外,形成膜內外質子濃度梯度,而能產生光電流。胞內(CP surface)與胞外(EC surface)因結構上的不同,所表現出來的特性也不同。我們利用原子力顯微鏡觀測到以不同的biotin對PM的兩面作選擇性的修飾,可較有效率的讓PM利用biotin-avidin鍵結吸附於基底。而分別對CP surface與EC surface作Force-distance Curve分析,發現EC surface其黏著力略大於CP surface,並且發現PM的黏著力也會隨著鹽度而改變,鹽度越大,黏著力越大。

Purple membranes (PM) are the two-dimensional structure composed of Bacteriorhodopsin (BR) and many type's lipids. When PM is lighted, the proton transfers from cytoplasmic (CP) to extracellular (EC). Thus, the proton concentration gradient will be formed between CP and EC and then the photoelectric current is generated.CP and EC surfaces have different characteristics because they have different compositions. The observations were made by AFM.The fixed direction of PM adsorption on the substrate can be controlled by different processes. We found that the adhesion force of EC surface is slightly stronger than CP surface by Force-distance Curve analysis. The salt concentration also was found to affect the adhesion force. The salt concentration is higher, the adhesion force is stronger.

致謝 i 摘要 iii Abstract iv 目錄 v 圖表目錄 vii 第1章 緒論 1 1-1 簡介紫色細胞膜(PM) 1 1-2 CP面與EC面的性質差異 3 1-3 研究動機 6 第2章 實驗儀器與原理 7 2-1 原子力顯微鏡 7 2-2 基本架構與原理 10 2-3 原子力顯微鏡的操作模式 11 2-4 力對距離曲線 (Force-distance Curve) 12 第3章 實驗方法與步驟 14 3-1 不同型態的PM樣品 14 3-2 AFM分析 18 第4章 實驗結果與討論 19 4-1 biotin(EC)-PM與biotin(CP)-PM的AFM分析 19 4-1-1 比較biotin修飾與否的biotin(EC)-PM 19 4-1-2 比較biotin修飾與否的biotin(CP)-PM 20 4-1-3 biotin(EC)-PM與biotin(CP)-PM的比較 21 4-1-4 鋪覆Au的biotin(EC)-PM與biotin(CP)-PM 23 4-2 Force-distance Curve分析 24 4-2-1 樣品各層的Force-distance Curve 24 4-2-2 黏著力與時間的關係 31 4-3 不同pH值下的native PM 39 4-3-1 鋪覆量的比較 39 4-3-2 Force-distance Curve分析 42 4-4 curve分析時常發生的誤差 45 第5章 結論 47 參考資料 49

1 Daniel J. M., Cora-Ann S., Georg B. & E., A. Immuno-Atomic Force Microscopy of Purple Membrane. Biophysical Journal 70, 1796-1802 (1996).
2 Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews 100, 1755-1776 (2000).
3 Kandori, H. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim. Biophys. Acta-Bioenerg. 1658, 72-79 (2004).
4 L., H. Proton Transfer Pathways in Bacteriorhodopsin at 2.3 Angstrom Resolution. Science 280, 1934-1937 (1998).
5 K., Y. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389, 206-211 (1997).
6 Hartmut L., Brigitte S., R., H.-T., C., J.-P. & L., J. K. Structure of Bacteriorhodopsin at 1.55 A Resolution. Journal of Molecular Biology 291, 899-911 (1999).
7 Oesterhelt, F. Unfolding Pathways of Individual Bacteriorhodopsins. Science 288, 143-146 (2000).
8 Yamashita, H. Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. Journal of Structural Biology. 167, 153-158 (2009).
9 Bastien S., Marie-Cécile G., Christian L. G. & M., P.-E. Probing supported model and native membranes using AFM. Current Opinion in Colloid & Interface Science 13, 326-337 (2008).
10 Muller, D. J. Atomic force microscopy of native purple membrane. Biochim. Biophys. Acta-Bioenerg. 1460, 27-38 (2000).
11 Muller, D. J., Sass, H. J., Muller, S. A., Buldt, G. & Engel, A. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. Journal of Molecular Biology 285, 1903-1909 (1999).
12 Kandori, H. Role of internal water molecules in the proton conduction of bacteriorhodopsin. Biochim. Biophys. Acta-Bioenerg. 1658, 71-71 (2004).
13 Voitchovsky, K., Contera, S. A., Kamihira, M., Watts, A. & Ryan, J. F. Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophysical Journal 90, 2075-2085 (2006).
14 Siitonen, A. M. et al. Elastic modulus of suspended purple membrane measured by atomic force microscopy. Appl. Surf. Sci. 254, 7877-7880 (2008).
15 Zhong, S. et al. Different interactions between the two sides of purple membrane with atomic force microscope tip. Langmuir 23, 4486-4493 (2007).
16 Butt, H. J., Prater, C. B. & Hansma, P. K. Imaging purple membranes dry and in water with the atomic force microscope. J. Vac. Sci. Technol. B 9, 1193-1196 (1991).
17 D.J. Müllera, F. A. S., G. Büldta and A. Engel. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophysical Journal 68, 1681-1686 (1995).

18 黃英碩. 掃描探針顯微術的原理及應用. 科儀新知第二十六卷第四期, 7-17 (2005).
19 邱千鳳. 利用掃描探針顯微鏡探測二氧化鈦奈米粒子. 國立台灣師範大學物理所碩士論文 (2006).
20 曾賢德. 掃描探針顯微鏡的原理與應用.
http://researcher.nsc.gov.tw/public/nanoassembly/Attachment/812291605871.pdf
21 NT-MDT說明書.
22 Cappella, B., Baschieri, P., Frediani, C., Miccoli, P. & Ascoli, C. Improvements in AFM imaging of the spatial variation of force-distance curves: On-line images. Nanotechnology 8, 82-87 (1997).
23 黃榮興, 林奎杰, 吳正興 & 劉軒宗. 表面粗糙度的量測. 逢甲大學專題論文 (2003).
24 B. Cappella, G. D. Force-distance curves by atomic force microscopy. Surface Science Reports 34, 1-104 (1999).
25 Heymann, J. B. et al. Charting the surfaces of the purple membrane. J. Struct. Biol. 128, 243-249 (1999).
26 陳仲宜. 自組裝分子膜在金屬防護領域之最新應用概況. 產業評析 (2008).
http://www.mirdc.org.tw/FileDownLoad/EpaperFile/2/52/MPNEWS9711_2_52/text/9711_2_itis05.pdf

下載圖示
QR CODE