簡易檢索 / 詳目顯示

研究生: 高士寰
Shih-Huan Kao
論文名稱: 第八型脊髓小腦運動失調症:遺傳及啟動子功能性分析
Spinocerebellar ataxia type 8 : genetic and promoter functional studies
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 64
中文關鍵詞: 第八型脊髓小腦運動失調症神經退化性疾病啟動子單套型
論文種類: 學術論文
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第八型脊髓小腦運動失調症(spinocerebellar ataxia type 8;簡稱SCA8)為一種遺傳之神經退化性疾病,通常伴隨著小腦功能障礙,但外顯率不完全。和SCA8相關的基因包括CTG三核苷重複擴增的ATXN8OS基因與反向表現CAG三核苷重複擴增的ATXN8基因。為探究SCA8的低外顯率,本論文檢視了ATXN8OS選擇性裁接的exon B及exon A附近序列,結果發現了兩個新穎的多型性點:SNP1 T/C、SNP2 C/T。此兩個多型性點組成的四種單套型中,T-T單套型在15個SCA8 CTG/CAG重複擴增病人族群中,出現的頻率較87個正常人族群來的低(4.7% vs. 22.8%,P = 0.041)。為探討ATXN8、ATXN8OS基因的轉錄調控,本論文將此兩基因的近端啟動子片段構築於pGL3-basic質體上。啟動子刪除分析實驗顯示,相較於ATXN8 -1035~-6、-518~-6片段,-99~-6片段的轉錄活性最強。位於ATXN8啟動子片段-62位置的SNP2 C/T雖可能影響轉錄因子CEBP的結合,但CEBPcD共轉移的實驗卻看不出SNP2 C/T對ATXN8啟動子活性的影響。在ATXN8OS的啟動子方向,反轉錄-聚合酶鏈式反應(RT-PCR)實驗則推測出ATXN8OS的啟動子位置位於表現子D5的上游。在ATXN8OS的細胞模式研究上,短暫大量表現CTG重複擴增的ATXN8OS在細胞內會形成ribonuclear foci。進一步的利用ATXN8OS誘導細胞株,發現CTG三核苷重複擴增數目為88或157時,annexin染到的細胞會顯著增加多於不含ATXN8OS CTG三核苷重複的細胞,而誘導ATXN8OS表現後,含23或157個ATXN8OS CTG三核苷重複擴增的細胞,其細胞週期停在G1/G0期也顯著多於不含ATXN8OS cDNA的細胞。本論文的研究結果或有助於釐清SCA8低外顯率及分子致病機轉。

    Spinocerebellar ataxia type 8 (SCA8) is a hereditary neurodegenerative disorder, manifesting itself as a slowly progressive cerebellar ataxia. The penetrance of SCA8 is incomplete. SCA8 involves the expression of a CTG/CAG expansion mutation from opposite strands producing CUG expansion transcripts (ATXN8OS) and a polyglutamine expansion protein (ATXN8) known to be pathogenic on other disorders. To investigate incomplete penetrance of the disease, the alternative splicing donor and acceptor sites flanking exons B and A were amplified and sequenced. Two novel SNPs, SNP1 T/C and SNP2 C/T, were identified. Among the four haplotypes constructed by SNP1 and SNP2, the T-T haplotype frequency is notably low in 15 cases with SCA8 expansion mutations compared to the 87 controls (4.7% vs. 22.8%, P = 0.041). To investigate the transcriptional pathways regulating ATXN8OS and ATXN8 expression, the ATXN8OS and ATXN8 promoter fragments were cloned into pGL3-basic vector. Promoter deletion analysis suggested that the ATXN8 -99~-6 proximal promoter fragment displayed highest promoter activity in comparison to -1035~-6 and -518~-6 fragments. Although SNP2 C/T at -62 position may affect transcription factor CEBPbinding, CEBPcD co-transfection did not demonstrate the effect of SNP2 C>T on ATXN8 expression. For ATXN8OS promoter, RT-PCR revealed that the ATXN8OS promoter region was located upstream of exon D5. In ATXN8OS cell model study, transiently expressed ATXN8OS cDNA carrying expanded CTG repeats formed ribonuclear foci. Furthermore, using inducible ATXN8OS cell lines, a repeat-length related increase in annexin-V-positive cells were observed. Upon induction of ATXN8OS expression, cell cycle analysis revealed a significant increase in the cell population at G1/G0 phase for cells carrying 23 and 157 CTG repeats compared to the vector cells. The study results may shed insights into the reduced penetrance and the pathogenesis of SCA8.

    Chinese Abstract ---------------------------------------------------------------- 1 English Abstract ----------------------------------------------------------------- 3 Introduction ---------------------------------------------------------------------- 5 I. Bidirectional expression of SCA8 ------------------------------------------ 5 II. Genetic analysis of SCA8 --------------------------------------------------- 6 III. ATXN8OS acts as an antisense RNA 8------------------------------------ 8 Ⅳ. Myotonic dystrophy --------------------------------------------------------- 8 V. Animal models of SCA8 ----------------------------------------------------- 9 Aims ------------------------------------------------------------------------------ 11 Materials and Methods ------------------------------------------------------- 12 Ⅰ. Subjects ---------------------------------------------------------------------- 12 Ⅱ. Genotyping ------------------------------------------------------------------ 12 Ⅲ. Sequence and RFLP analysis of the regions flanking ATXN8OS exon B and exon A --------------------------------------------------------- 12 Ⅳ. Statistical analysis ---------------------------------------------------------- 13 V. Cloning of ATXN8 and ATXN8OS promoters ---------------------------- 14 Ⅵ. Cloning of CEBP cDNA ------------------------------------------------ 14 Ⅶ. Transfection and fluorescence microscopy and flow cytometry examination ----------------------------------------------------------------- 15 Ⅷ. Transfection and measurement of luciferase activity------------------ 15 IX. RNA isolation -------------------------------------------------------------- 16 X. Reverse transcription-polymerase chain reaction (RT-PCR)--------- 17 XI. Fluorescent in situ hybridization (FISH) ------------------------------- 17 XII. Cell survival test ---------------------------------------------------------- 18 XIII. Cell cycle distribution analysis ---------------------------------------- 18 Results -------------------------------------------------------------------------- 20 I. Distribution of SCA8 CTG repeats in Taiwanese populations ------- 20 II. Sequencing the regions flanking ATXN8OS exon B and exon A----- 20 III. Genotpye and haplotype analysis of SNP1 T/C and SNP2 C/T------- 21 IV. Regulation of ATXN8 transcription--------------------------------------- 22 V. The upstream sequences regulating ATXN8OS transcription---------- 23 VI. Ribonuclear foci formation on ATXN8OS CUG expansion----------- 24 VII. Co-localization of ribonuclear foci with ubiquitin and HSP70------ 24 VIII. Isogenic ATXN8OS cell models --------------------------------------- 25 Discussion ----------------------------------------------------------------------- 26 I. SCA8 repeat range ----------------------------------------------------------- 26 II. Novel SNP1 T/C and SNP2 C/T ------------------------------------------ 27 III. Regulation of SCA8 bidirectional expression -------------------------- 27 IV. Ribonuclear foci formation ----------------------------------------------- 28 V. Repeat length-related cell dysfunction in ATXN8OS ------------------- 29 References --------------------------------------------------------------------- 31 Figures-------------------------------------------------------------------------- 42 Tables---------------------------------------------------------------------------- 55

    References

    Abecasis, G.R., Cookson, W.O. GOLD-graphical overview of linkage disequilibrium. Bioinformatics. 16(2):182-183, 2000.
    Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T., Kishimoto, T. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 9(6):1897-1906, 1990.
    Benzow, K.A., Koob, M.D. The KLHL1-antisense transcript ( KLHL1AS) is evolutionarily conserved. Mamm Genome. 13(3): 134-141, 2002.
    Camins, A., Verdaguer, E., Folch, J., Beas-Za´ rate, C., Canudas, A.M., Palla`s, M. Inhibition of ataxia telangiectasia-p53-E2F-1 pathway in neurons as a target for the prevention of neuronal apoptosis. Curr Drug Metab. 8(7):709-715, 2007.
    Cellini, E., Nacmias, B., Forleo, P., Piacentini, S., Guarnieri, B. M., Serio, A., Calabro, A., Renzi, D., Sorbi, S. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Italy. Arch Neurol. 58(11):1856-1859, 2001.
    Cellini, E., Piacentini, S., Nacmias, B., Forleo, P., Tedde, A., Bagnoli, S., Ciantelli, M., Sorbi, S. A family with spinocerebellar ataxia type 8 expansion and vitamin E deficiency ataxia. Arch Neurol. 59(12):1952-1953, 2002.
    Cheverud, J.M. A simple correction for multiple comparisons in interval mapping genome scans. Heredity. 87(Pt 1):52–58, 2001.
    Corral, J., Genis, D., Banchs, I., San Nicolas, H., Armstrong, J., Volpini, V. Giant SCA8 alleles in nine children whose mother has two moderately large ones. Ann Neurol. 57(4):549-553, 2005.
    David, G., Abbas, N., Stevanin, G., Dürr, A., Yvert, G., Cancel, G., Weber, C., Imbert, G., Saudou, F., Antoniou, E., Drabkin, H., Gemmill, R., Giunti, P., Benomar, A., Wood, N., Ruberg, M., Agid, Y., Mandel, J.L., Brice, A. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 17(1):65-70, 1997.
    Davis, B.M., McCurrach, M.E., Taneja, K.L., Singer, R.H., Housman, D.E. Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA. 94(14):7388-7393, 1997.
    Day, J.W., Schut, L.J., Moseley, M.L., Durand, A.C., Ranum, L.P. Spinocerebellar ataxia type 8: clinical features in a large family. Neurology. 55(5):649-657, 2000.
    Ebralidze, A., Wang, Y., Petkova, V., Ebralidse, K., Junghans, R.P. RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science. 303(5656):383-387, 2004.
    Erdmann, V. A., Barciszewska, M. Z., Szymanski, M., Hochberg, A., de Groot, N., Barciszewski, J. The non-coding RNAs as riboregulators. Nucleic Acids Res. 29(1):189-193, 2001.
    Factor, S.A., Qian, J., Lava, N.S., Hubbard, J.D., Payami, H. False-positive SCA8 gene test in a patient with pathologically proven multiple system atrophy. Ann Neurol. 57(3):462-463, 2005.
    He, Y., Zu, T., Benzow, K.A., Orr, H.T., Clark, H.B., Koob, M.D. Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci. 26(39):9975-9982, 2006.
    Hou, Y.T. Neurodegenerative disease: PPP2R2B gene genetics study and molecular research. NTNU Master's Thesis, 2005.
    Hung WL. Spinocerebellar ataxia type 8: Genetic analysis of CTG trinucleotide repeat and a cell model study. NTNU Master's Thesis, 2005.
    Ikeda, Y., Shizuka, M., Watanabe, M., Okamoto, K., Shoji, M. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology. 54(4):950-955, 2000.
    Ikeda, Y., Dalton, J.C., Moseley, M.L., Gardner, K.L., Bird, T.D., Ashizawa, T., Seltzer, W.K., Pandolfo, M., Milunsky, A., Potter, N.T., Shoji, M., Vincent, J.B., Day, J.W., Ranum, L.P. Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet. 75(1):3-16, 2004.
    Izumi, Y., Maruyama, H., Oda, M., Morino, H., Okada, T., Ito, H., Sasaki, I., Tanaka, H., Komure, O., Udaka, F., Nakamura, S., Kawakami, H. SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum. Genet. 72(3):704-709, 2003.
    Jardim, L.B., Silveira, I., Pereira, M.L., Ferro, A., Alonso, I., do Céu Moreira, M., Mendonça, P., Ferreirinha, F., Sequeiros, J., Giugliani, R. A survey of spinocerebellar ataxia in South Brazil - 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol. 248(10):870-876, 2001.
    Jin, P., Zarnescu, D.C., Zhang, F., Pearson, C.E., Lucchesi, J.C., Moses, K., Warren, S.T. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron. 39(5):739-747, 2003.
    Juvonen, V., Hietala, M., Päivärinta, M., Rantamäki, M., Hakamies, L., Kaakkola, S., Vierimaa, O., Penttinen, M., Savontaus, M.L. Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol. 48(3):354-361, 2000.
    Juvonen, V., Kairisto, V., Hietala, M., Savontaus, M.L. Calculating predictive values for the large repeat alleles at the SCA8 locus in patients with ataxia. J Med Genet. 39(12):935-936, 2002.
    Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., Akiguchi, I., Kimura, J., Narumiya, S., Kakizuka, A. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 8(3):221-228, 1994.
    Koch, K.S., Leffert, H.L. Giant hairpins formed by CUG repeats in myotonic dystrophy messenger RNAs might sterically block RNA export through nuclear pores. J Theor Biol. 192(4):505-514, 1998.
    Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H., Tsuji, S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet. 8(11):2047-2053, 1999.
    Koob, M.D., Moseley, M.L., Schut, L.J., Benzow, K.A., Bird, T.D., Day, J.W., Ranum, L.P. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 21(4):379-384, 1999.
    Krantic, S., Mechawar, N., Reix, S., Quirion, R. Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci. 28(12):670-676, 2005.
    Kuo, C.C., Hsieh, H.P., Pan, W.Y., Chen, C.P., Liou, J.P., Lee, S.J., Chang, Y.L., Chen, L.T., Chen, C.T., Chang, J.Y. BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 64(13):4621-4628, 2004.
    Lin, H.Y. Genetic studies of spinocereballar ataxias and molecular impacts of CTG trinucleotide expansion. NTNU Doctor's Thesis, 2007.
    Marsh, J.L., Walker, H., Theisen, H., Zhu, Y.Z., Fielder, T., Purcell, J., Thompson, L.M. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet. 9(1):13-25, 2000.
    Martins, S., Seixas, A.I., Magalhães, P., Coutinho, P., Sequeiros, J., Silveira, I. Haplotype diversity and somatic instability in normal and expanded SCA8 alleles. Am J Med Genet B Neuropsychiatr Genet. 139B(1):109-114, 2005.
    Miller, J. W., Urbinati, C.R., Teng-umnuay, P., Stenberg, M.G., Byrne, B.J., Thornton, C.A., Swanson, M.S. Recruitment of human muscleblind proteins to CUG(n) expansions associated with myotonic dystrophy. EMBO J. 19(17):4439-4448, 2000.
    Moseley, M.L., Schut, L.J., Bird, T.D., Koob, M.D., Day, J.W., Ranum, L.P. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet. 9(14):2125-2130, 2000.
    Moseley, M.L., Zu, T., Ikeda, Y., Gao, W., Mosemiller, A.K., Daughters, R.S., Chen, G., Weatherspoon, M.R., Clark, H.B., Ebner, T.J., Day, J.W., Ranum, L.P. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet. 38(7):758-769, 2006.
    Mosemiller, A.K., Dalton, J.C., Day, J.W., Ranum, L.P. Molecular genetics of spinocerebellar ataxia type 8 (SCA8). Cytogenet Genome Res. 100(1-4):175-183, 2003.
    Mutsuddi, M., Marshall, C.M., Benzow, K.A., Koob, M.D., Rebay, I. The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol. 14(4):302-308, 2004.
    Nemes, J.P., Benzow, K.A., Koob, M.D. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet. 9(10):1543-1551, 2000.
    Nunomura, A., Moreira, P.I., Lee, H.G., Zhu, X., Castellani, R.J., Smith, M.A., Perry, G. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord Drug Targets. 6(6):411-423, 2007.
    Nyholt, D.R. A simple correction for multiple testing for singlenucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 74(4):765-769, 2004.
    Orr, H.T., Chung, M.Y., Banfi, S., Kwiatkowski, T.J., Servadio, A., Beaudet, A.L., McCall, A.E., Duvick, L.A., Ranum, L.P., Zoghbi, H.Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type I. Nat Genet. 4(3):211-426, 1993.
    Pato, C.N., Macedo, A., Ambrosio, A., Vincent, J.B., Bauer, A., Schindler, K., Xu, J., Coelho, I., Dourado, A., Valente, J., Azevedo, M.H., Kennedy, J.L., Pato, M.T. Detection of expansion regions in Portuguese bipolar families. Am J Med Genet. 96(6):854-857, 2000.
    Philips, A.V., Timchenko, L.T., Cooper, T.A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 280(5364):737-741, 1998.
    Pulst, S.M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X.N., Lopes-Cendes, I., Pearlman, S., Starkman, S., Orozco-Diaz, G., Lunkes, A., DeJong, P., Rouleau, G.A., Auburger, G., Korenberg, J.R., Figueroa, C., Sahba, S. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 14(3):269-276, 1996.
    Ranum, L.P., Day, J.W. Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Curr Neurol Neurosci Rep. 2(5):465-470, 2002.
    Sasagawa, N., Takahashi, N., Suzuki, K., Ishiura, S. An expanded CTG trinucleotide repeat causes trans RNA interference: a new hypothesis for the pathogenesis of myotonic dystrophy. Biochem Biophys Res Commun. 264(1):76-80, 1999.
    Schols, L., Bauer, I., Zuhlke, C., Schulte, T., Kolmel, C., Burk, K., Topka, H., Bauer, P., Przuntek, H., Riess, O. Do CTG expansions at the SCA8 locus cause ataxia? Ann Neurol. 54(1):110-115, 2003.
    Shaw, G., Morse, S., Ararat, M., Graham, F.L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 16(6):869-871, 2002.
    Silveira, I., Alonso, I., Guimaraes, L., Mendonca, P., Santos, C., Maciel, P., Fidalgo de Matos, J. M., Costa, M., Barbot, C., Tuna, A., Barros, J., Jardim, L., Coutinho, P., Sequeiros, J. High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet. 66(3):830-840, 2000.
    Sobrido, M.J., Cholfin, J.A., Perlman, S., Pulst, S.M., Geschwind, D.H. SCA8 repeat expansions in ataxia: a controversial association. Neurology. 57(7):1310-1312, 2001.
    Stephens, M., Smith, N.J., Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 68(4):978-989, 2001.
    Stephens, M., Donnelly, P. Acomparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 73(5):1162-1169, 2003.
    Stevanin, G., Herman, A., Durr, A., Jodice, C., Frontali, M., Agid, Y., Brice, A. Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat Genet. 24(3):213, 2000.
    Strong, P.N., Brewster, B.S. Myotonic dystrophy: molecular and cellular consequences of expanded DNA repeats are elusive. J Inherit Metab Dis. 20(2):159-170, 1997.
    Sulek, A., Hoffman-Zacharska, D., Zdzienicka, E., Zaremba, J. SCA8 repeat expansion coexists with SCA1--not only with SCA6. Am J Hum Genet. 73(4):972-974, 2003.
    Tazon, B., Badenas, C., Jimenez, L., Munoz, E., Mila, M. SCA8 in the Spanish population including one homozygous patient. Clin Genet. 62(5):404-409, 2002.
    Tian, B., White, R.J., Xia, T., Welle, S., Turner, D.H., Mathews, M.B., Thornton, C.A. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA. 6(1):79-87, 2000.
    Timchenko, N.A., Cai, Z.J., Welm, A.L., Reddy, S., Ashizawa, T., Timchenko, L.T. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J Biol Chem. 276(11):7820-7826, 2001.
    Tiscornia, G., Mahadevan, M. S. Myotonic dystrophy: the role of the CUG triplet repeats in splicing of a novel DMPK exon and altered cytoplasmic DMPK mRNA isoform ratios. Molec Cell. 5(6):959-967, 2000.
    Topisirovic, I., Dragasevic, N., Savic, D., Ristic, A., Keckarevic, M., Keckarevic, D., Culjkovic, B., Petrovic, I., Romac, S., Kostic, V. S. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia. Clin Genet. 62(4):321-324, 2002.
    Vincent, J.B., Neves-Pereira, M.L., Paterson, A.D., Yamamoto, E., Parikh, S.V., Macciardi, F., Gurling, H.M., Potkin, S.G., Pato, C.N., Macedo, A., Kovacs, M., Davies, M., Lieberman, J.A., Meltzer, H.Y., Petronis, A, Kennedy, J.L. An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet. 66(3):819-829, 2000a.
    Vincent, J.B., Yuan, Q.P., Schalling, M., Adolfsson, R., Azevedo, M.H., Macedo, A., Bauer, A., DallaTorre, C., Medeiros, H.M., Pato, M.T., Pato, C.N., Bowen, T., Guy, C.A., Owen, M.J., O'Donovan, M.C., Paterson, A.D., Petronis, A., Kennedy, J.L. Long repeat tracts at SCA8 in major psychosis. Am J Med Genet. 96(6):873-876, 2000b.
    Woods, J., Snape, M., Smith, M.A. The cell cycle hypothesis of Alzheimer's disease: suggestions for drug development. Biochim Biophys Acta. 1772(4):503-508, 2007.
    Worth, P.F., Houlden, H., Giunti, P., Davis, M.B., Wood, N.W. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet. 24(3):214-215, 2000.
    Wu, Y.R., Lin, H.Y., Chen, C.M., Gwinn-Hardy, K., Ro, L.S., Wang, Y.C., Li, S.H., Hwang, J.C., Fang, K., Hsieh-Li, H.M., Li, M.L., Tung, L.C., Su, M. T., Lu, K. T., Lee-Chen, G.J. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin Genet. 65(3):209-214, 2004.
    Zar, J.H. 1999. Biostatistical analysis. 4th Edition. Upper Saddle River, NJ, Prentice-Hall.
    Zhuchenko, O., Bailey, J., Bonnen, P., Ashizawa, T., Stockton, D.W., Amos, C., Dobyns, W.B., Subramony, S.H., Zoghbi, H.Y., Lee, C.C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the 1A-voltage-dependent calcium channel. Nat Genet. 15(1):62-69, 1997.

    QR CODE