簡易檢索 / 詳目顯示

研究生: 施柏豪
Shih, Po-Hao
論文名稱: 數位學習環境與教學模式對高中生單極馬達實驗學習成效與動機之影響
The Effects of Digital Learning Environment and Instructional Approach on Senior High School Students’ Performance and Motivation toward Homopolar Motor Experiment
指導教授: 陳明溥
Chen, Ming-Puu
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 112
中文關鍵詞: 擴增實境教學模式數位模擬物理實驗
英文關鍵詞: Augmented Reality, instructional strategy, digital simulation, physics experiment
DOI URL: https://doi.org/10.6345/NTNU202202446
論文種類: 學術論文
相關次數: 點閱:270下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過實驗教學探討數位學習環境與探索式教學模式對學習者在單極馬達實驗的學習成效與學習動機之影響。本研究之對象為高中一年級學生,有效樣本105人。研究設計採因子設計之準實驗研究,自變項為「數位學習環境」及「教學模式」,數位學習環境依照環境的不同分為「擴增實境」及「數位模擬」;探索式教學模式依照探索方式不同分為「先探索後學習」(Play-Learn)及「先學習後探索」(Learn-Play)。依變項為單極馬達實驗之學習成效(知識理解、知識應用)及學習動機(價值面向、期望面向)。
    研究發現:在學習成效方面,(1)就知識理解成效而言,使用「數位模擬學習環境」的學習者在單極馬達實驗的學習表現優於使用「擴增實境學習環境」的學習者;(2)就知識應用成效而言,在「擴增實境學習環境」下,學習者使用「Learn-Play教學模式」其知識應用表現優於「Play-Learn教學模式」;而在「數位模擬學習環境」時,學習者使用「Play-Learn教學模式」的知識應用表現優於「Learn-Play教學模式」。在學習動機方面,(3)不同數位學習環境與教學模式下的學習者皆抱持正向的學習動機;而且(4)使用「擴增實境學習環境」及「Play-Learn教學模式」的學習者有較高的學習動機。

    The purpose of this study was to investigate the effects of different digital learning environments and instructional approaches on senior high school students’ performances and motivation toward the learning of homopolar motor experiment. The participants were the tenth graders and the effective sample size was 105. A quasi-experimental design was employed and the independent variables were type of digital learning environment and instructional approach. The digital learning environments included augmented reality and digital simulation while the instructional approaches involved Play-Learn and Learn-Play. The dependent variables were the students’ learning performance and learning motivation.
    The results revealed that: (a) for knowledge comprehension performance, learners in the group of digital simulation outperformed the learners in the group of augmented reality; (b) concerning the knowledge application, the learners in the group of augmented reality using Learn-Play approach outperformed the learners using Play-Learn approach; while in the group of digital simulation, the learners using Play-Learn approach outperformed the learners using Play-Learn approach; (c) with respect to the learning motivation, all participants showed positive motivation toward the employed learning environments; and (d) in particular, learners in the group of augmented reality revealed higher degree of motivation toward the participation and learners using Play-Learn approach presented higher learning motivation.

    附表目錄 vi 附圖目錄 viii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 5 第三節 研究範圍與限制 6 第四節 重要名詞釋義 8 第二章 文獻探討 10 第一節 物理科學學習 10 第二節 數位學習環境 15 第三節 5E探究學習環 22 第三章 研究方法 26 第一節 研究對象 26 第二節 研究設計 27 第三節 數位教材設計 31 第四節 研究工具 44 第五節 資料處理與分析 47 第四章 結果與討論 52 第一節 單極馬達實驗學習成效分析 52 第二節 單極馬達學習動機分析 59 第五章 結論與建議 69 第一節 結論 69 第二節 建議 71 參考文獻 74 中文部分 74 英文部分 76 附錄一 單極馬達實驗先備知識測驗 80 附錄二 單極馬達實驗學習單 85 附錄三 單極馬達實驗課程講義 99 附錄四 單極馬達實驗學習成效測驗 105 附錄五 單極馬達實驗學習動機量表 110

    中文部分
    吳沂木(2004)。資訊科技融入『自然與生活科技』的3D虛擬實境教學之探究-以電與磁教學為例。國立臺南大學碩士論文(未出版)。
    吳慧葳(2015)。數位遊戲式APP對中學體育班學習成效評估-以高中物理力學篇為例。淡江大學碩士論文(未出版)。
    周建和(2007)。街頭物理:動手做讓物理動起來。物理雙月刊, 29(4), 845–855。
    林宣安(2011)。演示教學對國中學生學習成效之影響-以電流磁效應及電磁感應為例。國立彰化師範大學物理系物理教學碩士論文(未出版)。
    林建隆、徐順益(2007)。國中自然與生活科技教師發展5E探究式光學單元教學模組之研究。物理教育學刊, 8(1), 1–16。
    林琬縈、周建和、蘇明俊(2010)。以5E學習環教學模式為基礎探討高職進修學校物理教學策略之行動研究-以摩擦力單元為例。物理教育學刊, 11(2), 19-29。
    林曉雯(2001)。國小自然科教師試行「學習環」之合作行動研究。屏東師院學報第十四期。
    洪婉萍(2011)。動手操作教學對國小五年級學童科學學習成效之研究-以臺北市某國小體育班植物繁殖與磁鐵概念學習為例。臺北市立教育大學自然科學系教學碩士班碩士論文(未出版)。
    唐健文(2001)。中學生「電流磁效應」及「感應電流」迷思概念及二段式診斷工具之研究。國立高雄師範大學物理研究所碩士論文(未出版)。
    湯兆崙、黃鼎凱、蔡宜君(2006)。多媒體促進互動教學-TEAL普通物理的實施與成效。物理雙月刊, 28(3), 544–553。
    黃明輝(2016)。微統整式課程單元應用於普通物理實驗。物理教育學刊, 17(2), 33–46。
    黃柏雅(2015)。結合動態模擬與動手做活動進行酸鹼課程補救教學之研究。國立高雄師範大學碩士論文(未出版)。
    黃福坤(2006)。透過物理模擬動畫進行物理教學與學習-介紹簡易模擬動畫設計環境Easy Java Simulation。物理雙月刊, 28(3)。
    黃鳳琴(2002)。建構主義教學對國小五年級學生「看星星」單元學習成效及概念分析研究。臺北市立師範學院碩士論文(未出版)。
    葉炳煙(2013)。學習動機定義與相關理論之研究。屏東教大體育, 285–293。
    葉蓉樺(2008)。操作式科學展示對「電與磁」相關概念學習輔助探討:中小學教師的觀點。物理教育學刊, 9(2), 35–56。
    廖邦捷(2014)。擴增型態與引導策略對高中電化學反應課程學習成效與動機之影響。國立臺灣師範大學碩士論文(未出版)。
    蔡承哲(2013)。擴增實境與鷹架教學策略對高中數學空間單元學習成效與動機之影響。國立臺灣師範大學碩士論文(未出版)。
    蔡福興、游光昭、蕭顯勝(2008)。從新學習遷移觀點發掘數位遊戲式學習之價值. 課程與教學季刊, 11(4), 237–278.

    英文部分
    Arvanitis, T. N., Petrou, A., Knight, J. F., Savas, S., Sotiriou, S., Gargalakos, M., & Gialouri, E. (2009). Human factors and qualitative pedagogical evaluation of a mobile augmented reality system for science education used by learners with physical disabilities. Personal and Ubiquitous Computing, 13(3), 243–250.
    Ateş, Ö., & Eryilmaz, A. (2011). Effectiveness of hands-on and minds-on activities on students’ achievement and attitudes towards physics. Asia-Pacific Forum on Science Learning and Teaching Article, 12(6), 1.
    Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.
    Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2013). Augmented reality in Education - Cases, places, and potentials. Proceedings of the 2013 IEEE 63rd Annual Conference International Council for Education Media, ICEM 2013, 37–41.
    Bybee, R. W., Taylor, J. a, Gardner, a, Scotter, P.V, Powell, J. C., Westbrook, a, & Landes, N. (2006). The BSCS 5E Instructional Model: Origins, Effectiveness, and Applications. Bscs, 1–19.
    Chang, Y. H., & Liu, J. C. iang. (2013). Applying an AR technique to enhance situated heritage learning in a ubiquitous learning environment. Turkish Online Journal of Educational Technology, 12(3), 21–32.
    Chen, N.-S., Teng, D. C.-E., Lee, C.-H., & Kinshuk. (2011). Augmenting paper-based reading activity with direct access to digital materials and scaffolded questioning. Computers & Education, 57(2), 1705–1715.
    Costu, B., Ünal, S., & Ayas, A. (2007). A hands-on activity to promote conceptual change about mixtures and chemical compounds. Journal of Baltic Science Education, 6(1), 35–46.
    DaRocha Seixas, L., Gomes, A. S., & DeMelo Filho, I. J. (2016). Effectiveness of gamification in the engagement of students. Computers in Human Behavior, 58, 48–63.
    Davidsson, M., Johansson, D., & Lindwall, K. (2012). Exploring the use of augmented reality to support science education in secondary schools. Proceedings 2012 17th IEEE International Conference on Wireless, Mobile and Ubiquitous Technology in Education, WMUTE 2012, 218–220.
    Doolittle, P. E., & Camp, W. G. (1999). Constructivism: The Career and Technical Education Perspective. Journal of Career and Technical Education, 16(1).
    Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-Supported Collaborative Learning, 7.
    Eseryel, D., Law, V., Ifenthaler, D., Ge, X., & Miller, R. (2014). An investigation of the interrelationships between motivation. Journal of Educational Technology & Society, 17(1), 42–53.
    Evans, C., & Waring, M. (2011). Student teacher assessment feedback preferences: The influence of cognitive styles and gender. Learning and Individual Differences, 21(3), 271–280.
    Fazelian, P., ebrahim, A. N., & Soraghi, S. (2010). The effect of 5E instructional design model on learning and retention of sciences for middle class students. Procedia - Social and Behavioral Sciences, 5, 140–143.
    Fiorentino, M., Uva, A. E., Gattullo, M., Debernardis, S., & Monno, G. (2014). Augmented reality on large screen for interactive maintenance instructions. Computers in Industry, 65(2), 270–278.
    Ibáñez, M. B., DiSerio, Á., Villarán, D., & Delgado Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1–13.
    Justice, C., Rice, J., Roy, D., Hudspith, B., & Jenkins, H. (2009). Inquiry-based learning in higher education: administrators’ perspectives on integrating inquiry pedagogy into the curriculum. Higher Education, 58(6), 841–855.
    Kahle, J. B., & Damnjanovic, A. (1994). The effect of inquiry activities on elementary students’ enjoyment. Journal of Women and Minorities in Science and Engineering, 1(1), 17–28.
    Karplus, Robert & Thier, H. D. (1967, January). A new look at elementary school science, new trends in curriculum and instruction series.
    Klopfer, E., & Sheldon, J. (2010). Augmenting your own reality: Student authoring of science-based augmented reality games. New Directions for Youth Development, 2010(128), 85–94.
    Klopfer, E., & Squire, K. (2008). Environmental Detectives—the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203–228.
    Lati, W., Supasorn, S., & Promarak, V. (2012). Enhancement of Learning Achievement and Integrated Science Process Skills Using Science Inquiry Learning Activities of Chemical Reaction Rates. Procedia - Social and Behavioral Sciences, 46, 4471–4475.
    Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Toward Valid and Meaningful Assessment of Learners’ Conceptions of Nature of Science. Journal of Research in Science Teaching, 39(6), 497–521.
    Lee, J. (1999). Effectiveness of Computer-based instruction simulation: A meta-analysis. International Journal of Instructional Media, 26(1), 71–85.
    Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science Education, 87(4), 517–538.
    Loureiro, A., & Bettencourt, T. (2014). The Use of Virtual Environments as an Extended Classroom – A Case Study with Adult Learners in Tertiary Education. Procedia Technology, 13, 97–106.
    Mansureh Kebritchi, & Atsusi, H. (2008). Examining the pedagogical foundations of modern educational computer games. Computers & Education, 51(4), 1729–1743.
    Prensky, M. (2003). Digital game-based learning.Computers in Entertainment, 1(1), 21-21.
    Matsutomo, S., Mitsufuji, K., Hiasa, Y., & Noguchi, S. (2013). Real time simulation method of magnetic field for visualization system with augmented reality technology. IEEE Transactions on Magnetics, 49(5), 1665–1668.
    Matsutomo, S., Miyauchi, T., Noguchi, S., & Yamashita, H. (2012). A New 3-D Visualization System of Magnetic Field with Augmented Reality Technology for Education. IEEE Transactions on Magnetics, 48(2), 531–534.
    Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(2), 551–568.
    Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented Reality: A class of displays on the reality-virtuality continuum, 2351.
    Mohanty, S. D., &Cantu, S. (2011). Teaching introductory undergraduate physics using commercial video games. Physics Education, 46(5), 570–577.
    Molenaar, I., Roda, C., vanBoxtel, C., & Sleegers, P. (2012). Dynamic scaffolding of socially regulated learning in a computer-based learning environment. Computers & Education, 59(2), 515–523.
    Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collaborative e-learning. Computers & Education, 50(4), 1339-1353.
    Moreno-Ger, P., Burgos, D., Martínez-Ortiz, I., Sierra, J. L., & Fernández-Manjón, B. (2008). Educational game design for online education. Computers in Human Behavior, 24(6), 2530–2540.
    Rastegarpour, H., & Marashi, P. (2012). The effect of card games and computer games on learning of chemistry concepts. Procedia - Social and Behavioral Sciences, 31, 597–601.
    Rienties, B., Giesbers, B., Tempelaar, D., Lygo-Baker, S., Segers, M., & Gijselaers, W. (2012). The role of scaffolding and motivation in CSCL. Computers & Education, 59(3), 893–906.
    Saorin, J. L., de La Torre, J., Martín, N., & Carbonell, C. (2013). Spatial training using digital tablets. Procedia-Social and Behavioral Sciences, 93, 1593-1597.
    Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
    Sun, C. T., Ye, S. H., & Wang, Y. J. (2015). Effects of commercial video games on cognitive elaboration of physical concepts. Computers and Education, 88, 169-181.
    Tatli, Z., & Ayas, A. (2013). Effect of a Virtual Chemistry Laboratory on Students’ Achievement. Educational Technology & Society, 16(1), 159–170.
    Tłaczała, W., Gorghiu, G., Glava, A., Bazan, P., Kukkonen, J., Mąsior, W., ... & Zaremba, M. (2006). Computer simulation and modeling in virtual physics experiments. In Proceedings of IV International Conference on Multimedia and Information & Communication Technologies in Education.
    Wang, C. Y., Wu, H. K., Wen-Yu Lee, S., Hwang, F. K., Chang, H. Y., Wu, Y. T., ... & Lo, H. C. (2014). A review of research on technology-assisted school science laboratories. Journal of Educational Technology & Society, 17(2).
    Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice. Science education, 87(1), 112-143.
    Yaman, M., Nerdel, C., & Bayrhuber, H. (2008). The effects of instructional support and learner interests when learning using computer simulations. Computers and Education, 51(4), 1784–1794.
    Yılmaz, H., & Çavaş, P. H. (2006). The Effect Of The 4-E Learning Cycle Method On Students’ Understanding Of Electricity. Journal of Turkish Science Education, 3(1), 2-5.
    Zhou, F., Been-Lirn Duh, H., & Billinghurst, M. (2008). Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR, 193–202.

    下載圖示
    QR CODE