研究生: |
蕭長泰 Hisao, Chang-Tai |
---|---|
論文名稱: |
石墨烯應用於深紫外光發光二極體上作為透明電流擴散層 Transparent Conductive Graphene Electrodes for UVC LED |
指導教授: |
胡淑芬
Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 石墨烯 、透明電流擴散層 、氧化鎳 、銦錫氧化物 、深紫外光發光二極體 |
英文關鍵詞: | graphene, Transparent Conductive Electrodes, NiO, ITO, UVC LED |
DOI URL: | https://doi.org/10.6345/NTNU202203873 |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯(graphene)為一種由碳原子依六角形排列而成之二維碳材料,其具有良好之電子遷移率、熱傳導度、機械特性與低片電阻等特性,而其於波長小於280奈米之高穿透度更被看好應用於深紫外光發光二極體(GaNLED)之上作為透明電流擴散層(TCE)。然而,石墨烯和GaN(特別是p-GaN)之間的高接觸電阻率(ρc)成為利用石墨烯作為GaNLED的透明電流擴散層需要解決的重大困難。
為了降低石墨烯和GaN介面的接觸電阻率,在本實驗中,我們準備了兩種類型的緩衝層包括氧化鎳(NiO)薄膜和銦錫氧化物(ITO)量子點放置於石墨烯和GaN之間,藉以增進石墨烯和GaN之附著力,並降低其介面的蕭特基能障。本實驗乃利用低壓化學氣相沉積(Chemical Vapor Deposition;CVD)方法製作石墨烯,p-GaN磊晶則由晶元光電所提供。其中厚度為2 nm之氧化鎳乃利用原子層化學氣相沉積法(Atomic Layer Deposition;ALD)將其沉積於石墨烯與p-GaN之間,另一緩衝層為於石墨烯與p-GaN間鍍層銦錫氧化物薄膜經蝕刻過後使之成為量子點銦錫氧化物。置入緩衝層後再以450°C氬氣環境下熱退火處理以加強結構完整性,最後利用圓形傳輸線模型(circular transmission line model;CTLM)與發光二極體元件量測其特性與電性。
Graphene is a two-dimensional carbon material which consists of hexagonal array of carbon atoms. It has great potential to use as transparent conductive electrodes in UVCLED because of its high electron mobility, thermal conductivity, Mechanical, and low sheet resistance. Most of all, it has great transmittance at 280 nm or lower wavelength light. Therefore, high specific contact resistance between graphene and GaN (especial p-GaN) is the biggest challenge that used graphene as transparent conductive electrodes in UVCLED.
To decrease the specific contact resistance between graphene and GaN. In this study, we show two Buffer layers, including NiO and ITO dots to improve the adhesion and decrease the Schottky barrier. Our graphene is prepared by low pressure chemical vapor deposition, and p-GaN is provided by Epistar. One is deposit 2 nm NiO between graphene and p-GaN. The other way is add the etched ITO dots between graphene and p-GaN. Both experiments have annealed at 450℃in Ar ambient after add Buffer layer between graphene and GaN. And we used circular transmission line model (CTLM) and device tester to measure its characteristic and electrical resistance.
[1] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, L. A. Coldren,Indium Tin Oxide Contacts to Gallium Nitride Optoelectronic Devices, Applied Physics Letters 74 (26), 0003-6951 (1999)
[2] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Graphene Photonics and Optoelectronics, Nature Photonics 4, 611 - 622 (2010)
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov,Electric Field Effect in Atomically Thin Carbon Films,Science306 (5696), 666-669 (2004)
[4] http://nanoprobes.aist-nt.com/apps/HOPG%20info.htm
[5] https://nano.nchc.org.tw/v1/dictionary/graphene.pdf
[6] https://www.equipes.lps.u-psud.fr/GOERBIG/Utrecht0809.pdf
[7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim,Fine Structure Constant Defines Visual Transparency of Graphene,Science 320 (5881), 1308-1308(2008)
[8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8 (3), 902-907 (2008)
[9] C. Lee, X. Wei, J. W. Kysar, J. Hone,Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321 (5887), 385-388 (2008)
[10] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The Role of Graphene for Electrochemical Energy Storage, Nature Materials 14, 271-279 (2015)
[11] R.V. Noorden, Production: Beyond Sticky Tape, Nature483,S32–S33 (2012)
[12] W. Norimatsu, M. Kusunoki, Formation Process of Graphene on SiC (0001), Physica E: Low-dimensional Systems and Nanostructures 42 (4), 691–694 (2010)
[13] 蘇清源,石墨烯的應用與前景, 物理雙月刊 33 (2), 145-256 (2011)
[14] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. 130 (18), 5856–5857 (2008)
[15] S. Park,R.S. Ruoff, Chemical Methods for the Production of Graphenes, Nature Nanotechnology 4, 217 - 224 (2009)
[16] http://www.graphene.ac.rs/lpe.html
[17] Y. Zhang, L. Gomez, F. N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev,C. Zhou, Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition, J. Phys. Chem 1 (20), 3101–3107 (2010)
[18] X. Li, W.Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 324 (5932), 1312-1314 (2009)
[19] http://www.wunan.com.tw/www2/download/preview/5D91.PDF
[20] https://zh.wikipedia.org/wiki/%E7%99%BC%E5%85%89%E4%BA%8C%E6%A5%B5%E7%AE%A1
[21] https://en.wikipedia.org/wiki/Light-emitting_diode
[22] http://www.isu.edu.tw/upload/81201/48/news/postfile_43775.pdf
[23] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, J. M. Tsai, 400-nm InGaN–GaN and InGaN–AlGaN Multiquantum Well Light-Emitting Diodes, IEEE Journalof Selected Topicsin Quantum Electronics 8 (4), 1077-260X (2002)
[24] http://www.golsen.jp/en/ultraviolet/kindofu.html
[25] http://highscope.ch.ntu.edu.tw/wordpress/?p=38863
[26] R. H. Horng, B. R. Wu, C. H. Tien, S. L. Ou, M. H. Yang, H. C. Kuo, D. S. Wu,Performance of GaN-based Light-emitting Diodes Fabricated Using GaN Epilayers Grown on Silicon Substrate, Optic Express 22 (1), A179-A187 (2014)
[27] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Graphene Photonics and Optoelectronics, Nature Photonics 4, 611 - 622 (2010)
[28] Liancheng Wang, Wei Liua, Yiyun Zhang, Zi-Hui Zhang, Swee Tiam Tan, Xiaoyan Yi, Guohong Wang, Xiaowei Sun, Hongwei Zhu, Hilmi Volkan Demir,Graphene-based Transparent Conductive Electrodes for GaN-based Light Emitting Diodes: Challenges and countermeasures, Nano Energy 12, 419-436 (2015)
[29] B. J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, Jr.J. Kim, Transparent Conductive Graphene Electrode in GaN-based Ultra-violet Light Emitting Diodes, Optics Express 18 (22), 23030-23034 (2010)
[30] T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E. K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, Graphene Network on Indium Tin Oxide Nanodot Nodes for Transparent and Current Spreading Electrode in InGaN/GaN Light Emitting Diode, Appl. Phys. Lett. 98, 251114 (2011)
[31] B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite,C. R. Eddy Jr., J. Kim, Large-area Transparent Conductive Few-layer Graphene Electrode in GaN-based Ultra- Violet Light-Emitting Diodes, Appl. Phys. Lett. 99, 143101 (2011)
[32] B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy Jr., F. R., S. J.Pearton, J. Kim, Buried Graphene Electrodes on GaN-based Ultra-violet Light-emitting Diode, Appl. Phys. Lett. 101, 031108 (2012)
[33] T. H. Seo, B. K. Kim, G. Shin, C. Lee, M. J. Kim, H. Kim, E. K. Suh, Graphene-silver Nanowire Hybrid Structure as a Transparent and Current Spreading Electrode in Ultraviolet Light Emitting Diode, Appl. Phys. Lett. 103, 051105 (2013)
[34] http://web.it.nctu.edu.tw/~FMPANLAB/ALD.htm
[35] http://services.icmab.es/nanoquim/index.php?option=com_k2&view=item&id=14:atomic-layer-deposition-system-savannah-from-cambrige-nanotech&Itemid=9
[36] 李嘉翔, 石墨烯在6H-SiC(0001)上的生長, 中山大學物理學系碩士論文, etd-0618113-050009 (2013)
[37] http://bwtek.com/raman-theory-of-raman-scattering/
[38] http://cnx.org/contents/8GImxcKk@2/Characterization-of-Graphene-b
[39] http://www.mast-tech.com.tw/Resistivity%20Measurement.pdf
[40] http://140.116.176.21/www/technique/SOP/SOP%204-Point%20Probe.pdf
[41] http://scholarbank.nus.sg/bitstream/handle/10635/14040/CHAPTER%202.PDF?sequence=7
[42] http://inside.mines.edu/~mlusk/low_dimensional_carbon_structure.htm