簡易檢索 / 詳目顯示

研究生: 陳宜龍
Chen, Yi-Lung
論文名稱: 性類固醇的微生物降解: 由模式物種延伸至環境樣本
Microbial Degradation of Sex Steroid Hormones: From Model Organisms to the Environmental Samples
指導教授: 江殷儒
Chiang, Yin-Ru
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 239
中文關鍵詞: biodegradationecophysiologyestrogenextradiol dioxygenasefunctional genomics13C-metabolomicsRNA-SeqSphingomonassteroid hormonesandrogenComamonassewage treatment plantIllumina MiSeqdenitrifying bacteriamolybdoenzymeSteroidobacterThauera
英文關鍵詞: biodegradation, ecophysiology, estrogen, extradiol dioxygenase, functional genomics, 13C-metabolomics, RNA-Seq, Sphingomonas, steroid hormones, androgen, Comamonas, sewage treatment plant, Illumina MiSeq, denitrifying bacteria, molybdoenzyme, Steroidobacter, Thauera
DOI URL: https://doi.org/10.6345/NTNU202203373
論文種類: 學術論文
相關次數: 點閱:57下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Sex steroid hormones (SHs), a major group of endocrine disrupting agents, are often detected in aquatic environments. The most concerned SHs include estrogens (e.g., 17β-estradiol and estrone) and androgens (e.g., testosterone). Among the proposed remediation strategies, bacterial degradation has been considered an efficient and eco-friendly strategy for removing the SHs from the contaminated ecosystems. In this dissertation, I aimed to investigate the metabolic and phylogenetic diversity related to bacterial degradation of SHs from model organisms to the environemnt. By using culturable bacterial strains as model organisms, I demonstrated that strictly aerobic Sphingomonas sp. strain KC8 degrade estrogens through the 4,5-seco pathway; the essential meta-cleavage dioxygenase was isolated and characterized. Furthermore, through the genomic and transcriptomic analyses, I identified the catabolic gene clusters in the 4,5-seco pathway of strain KC8, and in the 2,3-seco pathway for androgen biodegradation of Steroidobacter denitrificans DSM 18526. The omics studies on the model organisms enabled the environmental investigations of steroid biodegradation, for which I used the following approaches: (i) ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identification of signature metabolites, (ii) identification of main catabolic players through next-generation sequencing techniques, and (iii) PCR-based identification of functional genes. This study is the first integrated ‘omics’ investigation on the biochemical mechanisms and phylogenetic diversity of steroid biodegradation in the environment.
    In brief, Introduction provides the background information of SHs, current knowledge on their biodegradation, and my research objectives.
    The studies of androgen degradation: the genome of the androgen anaerobic decomposer, Steroidobacter denitrificans was completely sequenced and annotated. Transcriptomic data revealed the gene clusters that were distinctly expressed during anaerobic growth on testosterone; besides, I identified the bifunctional 1-testosterone hydratase/dehydrogenase, which is essential for anaerobic degradation of steroid A-ring. Because of apparent substrate preference of this molybdoenzyme, corresponding genes, along with the signature metabolites of the 2,3-seco pathway, suggested as biomarkers to investigate androgen biodegradation. Based on the available biomarkers of androgen degradation, I investigated the biochemical mechanisms and corresponding microorganisms of androgen degradation in the anaerobic and aerobic sewage. Sewage samples collected from the
    Dihua Sewage Treatment Plant (Taipei, Taiwan) were incubated with testosterone (1 mM) anaerobically or aerobically. Androgen metabolite analysis indicated that denitrifying bacteria in anaerobic sewage use the 2,3-seco pathway to degrade androgens. Metagenomic analysis and PCR-based functional assay showed androgen degradation in anaerobic sewage by Thauera spp. (mainly T. terpenica) through the action of 1-testosterone hydratase/dehydrogenase. Moreover, the 2.3-seco pathway utilized by T. terpenica 58Eu (DSMZ 12139) was also confirmed. By contrast, bacteria in aerobic sewage degraded androgens via the oxygenase-dependent 9,10-seco pathway, and the metagenomic analysis indicated the apparent enrichment of Comamonas spp. (mainly C. testosteroni) and Pseudomonas spp. in sewage incubated with testosterone. I used the degenerate primers derived from the meta-cleavage dioxygenase gene (tesB) of various proteobacteria to track this essential catabolic gene in the sewage. The amplified sequences showed the highest similarity (87–96%) to tesB of C. testosteroni. Using quantitative PCR, I detected a remarkable increase of the 16S rRNA and catabolic genes of C. testosteroni in the testosterone-treated sewage.
    The studies of estrogen degradation: Using a tiered functional genomics approach, I deciphered the catabolic enzymes and genes involved in estrogen biodegradation by a wastewater isolate, Sphingomonas sp. strain KC8. I identified the initial intermediates of this catabolic pathway, including 4-hydroxyestrone, a meta-cleavage product, and pyridinestrone acid. The yeast-based estrogen assay suggested that pyridinestrone acid exhibits negligible estrogenic activity. Further genomic and transcriptomic analyses revealed that two gene clusters are specifically expressed in strain KC8 cells grown on 17β-estradiol. I also characterized 17β-estradiol dehydrogenase and 4-hydroxyestrone 4,5-dioxygenase responsible for the 17-dehydrogenation and meta-cleavage of the estrogen A-ring, respectively. The 4-hydroxyestrone 4,5-dioxygenase gene and the characteristic pyridinestrone acid were detected in two wastewater treatment plants and two suburban rivers in Taiwan. In conclusion, the catabolic genes and characteristic metabolites can be used as the biomarkers to investigate fate and biodegradation potential of estrogens in the environment.

    Summary I Acknowledgement V Curriculum Vitae VII Contributions and Publications VIII Table of Contents XI List of Tables XVII List of Figures XIX List of Appendix Tables XXIV List of Appendix Figures XXVI List of Abbreviations XXVII 1 Introduction 1.1 Sex steroid hormones: structure, properties, occurrence, and biological significance 1 1.2 Sex steroid hormones: environmental impact 3 1.3 Sex steroid hormones: biotransformation, biodegradation, and mineralization 5 1.3.1 Microbial androgen degradation 6 1.3.2 Microbial estrogen degradation 9 1.3.3 Microbial progestogen degradation12 1.4 Research objectives 12 2 Materials and Methods 2.1 Chemicals and bacterial strains 17 2.1.1 Chemicals 17 2.1.2 Bacterial strains and plasmids 17 2.2 Bacterial cultures 17 2.2.1 Growth of Steroidobacter denitrificans DSM 18526 17 2.2.2 Growth of Sphingomonas sp. strain KC8 18 2.2.3 Other bacteria 20 2.3 Preparation of cell extracts 20 2.4 Determination of activity of sex steroid hormones 21 2.4.1 lacZ-based yeast androgen bioassay 21 2.4.2 lacZ-based yeast estrogen bioassay 22 2.5 Purification and characterization of steroid-transforming enzymes 23 2.5.1 Purification of 4-hydroxyestrone 4,5-dioxygenase (OecC) from estrone-grown Sphingomonas sp. strain KC8 23 2.5.2 SDS-PAGE, MS/MS analysis, and protein identification 25 2.6 Genome sequencing, assembly and annotation 25 2.6.1 Steroidobacter denitrificans genome 25 2.6.2 Sphingomonas sp. strain KC8 genome 26 2.7 RNA extraction and transcriptomic analysis 27 2.7.1 RNA-Seq sequencing of Steroidobacter denitrificans mRNA 27 2.7.2 RNA-Seq sequencing of Sphingomonas sp. strain KC8 mRNA 28 2.8 Sampling sites and sample preparation 29 2.8.1 Sampling sites 29 2.8.2 Sample collection and preparation 31 2.9 Bacterial community analysis 33 2.9.1 Illumina MiSeq sequencing of bacterial 16S rRNA amplicons 33 2.9.2 16S rRNA gene-based taxonomic analysis 35 2.10 Analytical chemical methods 35 2.10.1 Nucleic acid analysis 35 2.10.2 Determination of total protein concentration 35 2.10.3 Thin layer chromatography (TLC) 36 2.10.4 High performance liquid chromatography (HPLC) 36 2.10.5 Mass spectrometry (MS) 37 2.11 Molecular biological methods 39 2.11.1 General DNA manipulations 39 2.11.2 Polymerase chain reaction (PCR) 39 2.11.3 Quantitative real-time PCR (qPCR) 41 2.11.4 Gene cloning and sequencing 42 2.11.5 Phylogentic analysis of DNA and protein sequences 42 2.11.6 Clone, over-expression, purification and properties of recombinant protein, OecChis 43 3 Results 3.1 Omics studies on the model organisms 48 3.1.1 Steroidobacter denitrificans genome 48 3.1.2 Comparative transcriptomics of Steroidobacter denitrificans 50 3.1.3 Phylogenetic analyses of essential catabolic enzyme involved in anaerobic androgen degradation pathway 54 3.1.4 Sphingomonas sp. strain KC8 degrades natural estrogens through the steroid 4,5-seco pathway 55 3.1.5 Genome of Sphingomonas sp. strain KC8 56 3.1.6 Comparative transcriptomics of Sphingomonas sp. strain KC8 58 3.1.7 Functional confirmation of oecA 59 3.1.8 Purification and characterization of OecC 60 3.2 Microbial steroid catabolism in the environmental samples 63 3.2.1 Identification of androgen metabolites in the sewage 63 3.2.2 Phylogenetic identification of androgen-degrading bacteria in the testosterone-spiked sewage 65 3.2.3 PCR amplification of the functional genes for androgen degradation in the sewage 67 3.2.4 Quantitative PCR confirmed the remarkable increase of the 16S rRNA and catabolic genes of Comamonas testosteroni in the testosterone-spiked sewage 70 3.2.5 Prevalence of pyridinestrone acid in aquatic ecosystems during estrogen biodegradation 71 3.2.6 Presence and diversity of 4-hydroxyestrone 4,5-dioxygenase genes in the activated sludge 72 4 Discussion 4.1 Catabolic genes involved in androgen degradation by Steroidobacter denitrificans 74 4.2 atcA gene as a biomarker for environmental investigation of anoxic androgen biodegradation 77 4.3 Biochemical mechanisms and catabolic enzymes involved in estrogen degradation by Sphingomonas sp. strain KC8 78 4.4 Catabolic strategy of Sphingomonas sp. strain KC8 towards androgens and estrogens 81 4.5 Other microorganisms potentially degrade estrogens through the 4,5-seco pathway 82 4.6 Pyridinestrone acid as a biomarker for environmental investigation of estrogen biodegradation 84 4.7 Degradation of sex steroid hormones on microbe-host interactions 85 4.8 General feature of the bacterial communities and androgen transformation in the sewage of DHSTP 86 4.9 Proposed androgen degradation pathways and the primary degraders in the testosterone-spiked sewage sample 88 4.9.1 The anaerobic androgen degradation pathway function in the aerobic sewage 88 4.9.2 Thauera spp. may be the primary androgen degraders in the anoxic sewage 89 4.9.3 The aerobic androgen degradation pathway function in the oxic sewage 90 4.9.4 Comamonas teostosteroni was identified as an androgen degrader in the aerobic sewage 91 4.10 Limitation of 16S rRNA amplicon analysis on inferring metabolic ability 95 4.11 The aerobic estrogen degradation pathway functions in aquatic ecosystems 96 4.12 Sequence diversity of the functional gene for aerobic estrogen degradation in the sewage 97 4.13 Comparison with other culture-independent methods on in situ microbial degradation of estrogens 98 4.14 Future prospects on in situ techniques for studying microbial degradation of sex steroid hormones 99 5 Reference 102 6 Appendix 205

    Antai SP, Crawford DL. (1981). Degradation of softwood, hardwood, and grass lignocelluloses by two streptomyces strains. Appl Environ Microbiol 42: 378-380.

    Arai H, Akahira S, Ohishi T, Maeda M, Kudo T. (1998). Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144 ( Pt 10): 2895-2903.

    Asturias JA, Timmis KN. (1993). Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J bacteriol 175: 4631-4640.

    Atienzar FA, Billinghurst Z, Depledge MH. (2002). 4-n-Nonylphenol and 17-β estradiol may induce common DNA effects in developing barnacle larvae. Environ pollut 120: 735-738.

    Auling G, Reh M, Lee C, Schlegel H. (1978). Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: Its differentiation from Pseudomonas flava and other yellow-pigmented, gram-negative, hydrogen-oxidizing species. Int J Syst Evol Microbiol 28: 82-95.

    Balázs A, Krifaton C, Risa A, Cserháti M, Kukolya J, Tóth Á et al. (2014). Biodegradation of 5α-dihydrotestosterone to non-androgenic products. Int Biodeterior Biodegradation 93: 162-167.

    Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34: 5059-5066.

    Barry BW, El eini DID. (1976). Surface properties and micelle formation of long-chain polyoxyethylene nonionic surfactants. J. Colloid Interface Sci 54: 339-347.

    Bathe S, Hausner M. (2006). Design and evaluation of 16S rRNA sequence based oligonucleotide probes for the detection and quantification of Comamonas testosteroni in mixed microbial communities. BMC Microbiol 6: 54.

    Behrens S, Lösekann T, Pett-Ridge J, Weber PK, Ng W-O, Stevenson BS et al. (2008). Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 74: 3143-3150.

    Bergstrand LH, Cardenas E, Holert J, Van Hamme JD, Mohn WW. (2016). Delineation of steroid-degrading microorganisms through comparative genomic analysis. MBio 7: e00166.

    Bhandare R, Calabro M, Coschigano PW. (2006). Site-directed mutagenesis of the Thauera aromatica strain T1 tutE tutFDGH gene cluster. Biochem Biophys Res Commun 346: 992-998.

    Billinghurst Z, Clare A, Fileman T, McEvoy J, Readman J, Depledge M. (1998). Inhibition of barnacle settlement by the environmental oestrogen 4-nonylphenol and the natural oestrogen 17β oestradiol. Marine Poll Bull 36: 833-839.

    Billinghurst Z, Clare A, Matsumura K, Depledge M. (2000). Induction of cypris major protein in barnacle larvae by exposure to 4-n-nonylphenol and 17β-oestradiol. Aquat Toxicol 47: 203-212.

    Bradley PM, Barber LB, Chapelle FH, Gray JL, Kolpin DW, McMahon PB. (2009). Biodegradation of 17β-estradiol, estrone and testosterone in stream sediments. Environ Sci Technol 43: 1902-1910.

    Casabon I, Crowe AM, Liu J, Eltis LD. (2013a). FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. Mol Microbiol 87: 269-283.

    Casabon I, Zhu SH, Otani H, Liu J, Mohn WW, Eltis LD. (2013b). Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite. Mol Microbiol 89: 1201-1212.

    Cerdan P, Rekik M, Harayama S. (1995). Substrate specificity differences between two catechol 2,3‐dioxygenases encoded by the TOL and NAH Plasmids from Pseudomonas putida. Eur J Biochem 229: 113-118.

    Chang H, Wan Y, Hu JY. (2009). Determination and source apportionment of five classes of steroid hormones in urban rivers. Environ Sci Technol 43: 7691-7698.

    Chang H, Wan Y, Wu S, Fan Z, Hu J. (2011). Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens. Water Res 45: 732-740.

    Chen HC, Farese RV. (1999). Steroid hormones: Interactions with membrane-bound receptors. Curr Biol 9: R478-R481.

    Chen TS, Chen TC, Yeh KJ, Chao HR, Liaw ET, Hsieh CY et al. (2010). High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Sci Total Environ 408: 3223-3230.

    Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M et al. (2001). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int Syst Evol Microbiol 51: 1729-1735.

    Chiang YR, Ismail W, Gallien S, Heintz D, Van Dorsselaer A, Fuchs G. (2008a). Cholest-4-en-3-one-delta 1-dehydrogenase, a flavoprotein catalyzing the second step in anoxic cholesterol metabolism. Appl Environ Microbiol 74: 107-113.

    Chiang YR, Ismail W, Heintz D, Schaeffer C, Van Dorsselaer A, Fuchs G. (2008b). Study of anoxic and oxic cholesterol metabolism by Sterolibacterium denitrificans. J Bacteriol 190: 905-914.

    Chiang YR, Fang JY, Ismail W, Wang PH. (2010). Initial steps in anoxic testosterone degradation by Steroidobacter denitrificans. Microbiology 156: 2253-2259.

    Cole JR, Wang Q, Fish JA, Chai B, McGarrell, DM, Sun Y et al. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res, 42: D633-D642.

    Coombe RG, Tsong YY, Hamilton PB, Sih CJ. (1966). Mechanisms of steroid oxidation by microorganisms. J Biol Chem 241: 1587-1595.

    Dagley S, Evans WC, Ribbons DW. (1960). New pathways in the oxidative metabolism of aromatic compounds by micro-organisms. Nature 188: 560-566.

    Davis DL, Bradlow HL, Wolff M, Woodruff T, Hoel DG, Anton-Culver H. (1993). Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Health Perspect 101: 372-377.

    de las Heras LF, Fernandez EG, Llorens JMN, Perera J, Drzyzga O. (2009). Morphological, physiological, and molecular characterization of a newly isolated steroid-degrading actinomycete, identified as Rhodococcus ruber strain Chol-4. Curr Microbiol 59: 548-553.

    Dermer J, Fuchs G. (2012). Molybdoenzyme that catalyzes the anaerobic hydroxylation of a tertiary carbon atom in the side chain of cholesterol. J Biol Chem 287: 36905-36916.

    Ding JY, Shiu JH, Chen WM, Chiang YR, Tang SL. (2016). Genomic Insight into the Host-Endosymbiont Relationship of Endozoicomonas montiporae CL-33(T) with its Coral Host. Front Microbiol 7: 251.

    Dodson R, Muir R. (1961). Microbiological transformations. VI. The microbiological aromatization of steroids. J Am Chem Soc 83: 4627-4631.

    Dresen C, Lin LY, D'Angelo I, Tocheva EI, Strynadka N, Eltis LD. (2010). A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285: 22264-22275.

    Drzyzga O, Llorens JMN, de las Heras LF, Fernández EG, Perera J. (2009). Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int Syst Evol Microbiol 59: 1011-1015.

    Drzyzga O, de las Heras LF, Morales V, Llorens JMN, Perera J. (2011). Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol 77: 4802-4810.

    Dumont MG, Murrell JC. (2005). Stable isotope probing—linking microbial identity to function. Nature Rev Microbiol 3: 499-504.

    Dunham SJB, Ellis JF, Li B, Sweedler JV. (2017). Mass spectrometry imaging of complex microbial communities. Accounts Chem Res 50: 96-104.

    Duong CN, Lee JH, Lim BJ, Kim SD. (2011). Biodegradation of estrogen conjugates by bacteria isolated from river sediments. Water Sci Technol 64: 1750-1758.

    Edgar RC. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res 32: 1792-1797.

    Eltis LD, Hofmann B, Hecht HJ, Lünsdorf H, Timmis KN. (1993). Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem 268: 2727-2732.

    Emons G, Hoppen H, Ball P, Knuppen R. (1980). 4-hydroxyestrone, isolation and identification in human urine. Steroids 36: 73-79.

    Executive Yuan ROC. (2014). Chapter 1: Geography & Demographics. The Republic of China Yearbook 2014. p 44.

    Fahrbach M, Kuever J, Meinke R, Kampfer P, Hollender J. (2006). Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56: 1547-1552.

    Fahrbach M, Kuever J, Remesch M, Huber BE, Kampfer P, Dott W et al. (2008). Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 58: 2215-2223.

    Fahrbach M, Krauss M, Preiss A, Kohler H-PE, Hollender J. (2010). Anaerobic testosterone degradation in Steroidobacter denitrificans–identification of transformation products. Environ pollut 158: 2572-2581.

    Fan Z, Casey FX, Hakk H, Larsen GL. (2007). Persistence and fate of 17β-estradiol and testosterone in agricultural soils. Chemosphere 67: 886-895.

    Fan Z, Wu S, Chang H, Hu J. (2011). Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: comparison to estrogens. Environ Sci Technol 45: 2725-2733.

    Farshad S, Norouzi F, Aminshahidi M, Heidari B, Alborzi A. (2012). Two cases of bacteremia due to an unusual pathogen, Comamonas testosteroni in Iran and a review literature. J Infect Dev Countr 6: 521-525.

    Fernandez L, Louvado A, Esteves VI, Gomes NC, Almeida A, Cunha A. (2017). Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. J Hazard Mater 323: 359-366.

    Fernandez SV, Russo IH, Russo J. (2006). Estradiol and its metabolites 4‐hydroxyestradiol and 2‐hydroxyestradiol induce mutations in human breast epithelial cells. Int J Cancer 118: 1862-1868.

    Ferrier D. (2016). Biochemistry 7th ed. Philadelphia: LWW.

    Foss S, Harder J. (1998). Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (Linalool, Menthol, and Eucalyptol) and nitrate. Syst Applied Microbiol 21: 365-373.

    Fox JE, Burow ME, McLachlan JA, Miller CA. (2008). Detecting ligands and dissecting nuclear receptor-signaling pathways using recombinant strains of the yeast Saccharomyces cerevisiae. Nat Protoc 3: 637-645.

    Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461-2470.

    Fujii K, Satomi M, Morita N, Motomura T, Tanaka T, Kikuchi S. (2003). Novosphingobium tardaugens sp nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 53: 47-52.

    Galperin MY, Makarova KS, Wolf YI, Koonin EV. (2015). Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43: D261-D269.

    Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ et al. (2011). High-quality draft assemblies of mammalian genomes from massively parallel sequence data. P Natl Acad Sci USA 108: 1513-1518.

    Gong W, Kisiela M, Schilhabel MB, Xiong G, Maser E. (2012). Genome sequence of Comamonas testosteroni ATCC 11996, a representative strain involved in steroid degradation. J Bacteriol 194: 1633-1634.

    Gordon RE & Smith MM. (1953). Rapidly growing, acid fast bacteria. I. Species’ descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J Bacteriol 66: 41.

    Griffith DR, Soule MCK, Eglinton TI, Kujawinski EB, Gschwend PM. (2016). Steroidal estrogen sources in a sewage-impacted coastal ocean. Environ Sci Proc IMP 18: 981-991.

    Grissa I, Vergnaud G, Pourcel C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35: W52-W57.

    Guo F, Ju F, Cai L, Zhang T. (2013). Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment. PLoS One 8: e76185.

    Hadd HE, Blickenstaff RT. (1969). Conjugates of steroid hormones. New York: Academic Press.

    Hanselman TA, Graetz DA, Wilkie AC. (2003). Manure-borne estrogens as potential environmental contaminants: A review. Environ Sci Technol 37: 5471-5478.

    Heiss G, Stolz A, Kuhm AE, Muller C, Klein J, Altenbuchner J et al. (1995). Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol 177: 5865-5871.

    Homklin S, Ong SK, Limpiyakorn T. (2012). Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry. J Hazard Mater 221-222: 35-44.

    Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T. (2001). Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology 147: 3367-3375.

    Horinouchi M, Hayashi T, Koshino H, Yamamoto T, Kudo T. (2003). Gene encoding the hydrolase for the product of the meta-cleavage reaction in testosterone degradation by Comamonas testosteroni. Appl Environ Microbiol 69: 2139-2152.

    Horinouchi M, Hayashi T, Kudo T. (2004a). The genes encoding the hydroxylase of 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 92: 143-154.

    Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T, Kudo T. (2004b). Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun 324: 597-604.

    Horinouchi M, Hayashi T, Kudo T. (2012). Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 129: 4-14.

    Horinouchi M, Hayashi T, Koshino H, Malon M, Hirota H, Kudo T. (2014). Identification of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid and β-oxidation products of the C-17 side chain in cholic acid degradation by Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 143: 306-322.

    Hu A, He J, Chu KH, Yu CP. (2011). Genome sequence of the 17β-estradiol-utilizing bacterium Sphingomonas strain KC8. J Bacteriol 193: 4266-4267.

    Hugo N, Meyer C, Armengaud J, Gaillard J, Timmis KN, Jouanneau Y. (2000). Characterization of three XylT-like [2Fe-2S] ferredoxins associated with catabolism of cresols or naphthalene: Evidence for their involvement in catechol dioxygenase reactivation. J Bacteriol 182: 5580-5585.

    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119-129.

    Iasur-Kruh L, Hadar Y, Minz D. (2011). Isolation and bioaugmentation of an estradiol-degrading bacterium and its integration into a mature biofilm. Appl Environ Microbiol 77: 3734-3740.

    Illumina, Inc. (2013, November 27). 16S Metagenomic Sequencing Library Preparation. Retrieved December 3, 2015, from https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf

    Illumina, Inc. (2014, May). 16S Metagenomics App Retrieved December 3, 2015, from https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/basespace/16s-metagenomics-user-guide-15055860-a.pdf

    Ismail W, Chiang Y. (2011). Oxic and anoxic metabolism of steroids by bacteria. J Biorem Biodegrad S1:001 .

    Jacobsen AM, Lorenzen A, Chapman R, Topp E. (2005). Persistence of testosterone and 17β-estradiol in soils receiving swine manure or municipal biosolids. J Environ Qual 34: 861-871.

    Jenkins R, Angus RA, McNatt H, Howell WM, Kemppainen JA, Kirk M et al. (2001). Identification of androstenedione in a river containing paper mill effluent. Environ Toxicol Chem 20: 1325-1331.

    Jenkins RL, Wilson EM, Angus RA, Howell WM, Kirk M. (2003). Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol Sci 73: 53-59.

    Jiang L, Yang J, Chen J. (2010). Isolation and characteristics of 17β-estradiol-degrading Bacillus spp. strains from activated sludge. Biodegradation 21: 729-736.

    Jin JF, Straathof AJJ, Pinkse MWH, Hanefeld U. (2011). Purification, characterization, and cloning of a bifunctional molybdoenzyme with hydratase and alcohol dehydrogenase activity. Appl Microbiol Biot 89: 1831-1840.

    Johnson AC, Belfroid A, Di Corcia A. (2000). Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci Total Environ 256: 163-173.

    Kaltenpoth M, Strupat K, Svatos A. (2016). Linking metabolite production to taxonomic identity in environmental samples by (MA) LDI-FISH. ISME J 10: 527-531.

    Kämpfer P. (1995). Physiological and chemotaxonomic characterization of filamentous bacteria belonging to the genus Haliscomenobacter. Sys Appl Microbiol 18: 363-367.

    Ke JX, Zhuang WQ, Gin KYH, Reinhard M, Hoon LT, Tay JH. (2007). Characterization of estrogen-degrading bacteria isolated from an artificial sandy aquifer with ultrafiltered secondary effluent as the medium. Appl Microbiol Biot 75: 1163-1171.

    Khanal SK, Xie B, Thompson ML, Sung S, Ong S-K, Van Leeuwen J. (2006). Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 40: 6537-6546.

    Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104: 8897-8901.

    Kidd KA, Paterson MJ, Rennie MD, Podemski CL, Findlay DL, Blanchfield PJ et al. (2014). Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen. Philos Trans R Soc Lond B Biol Sci 369.

    Kieslich K. (1985). Microbial side-chain degradation of sterols. J Basic Microbiol 25: 461-474.

    Kim YU, Han J, Lee SS, Shimizu K, Tsutsumi Y, Kondo R. (2007). Steroid 9α-hydroxylation during testosterone degradation by resting Rhodococcus equi cells. Arch Pharm (Weinheim) 340: 209-214.

    Kisiela M, Skarka A, Ebert B, Maser E. (2012). Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. J Steroid Biochem Mol Biol 129: 31-46.

    Kolodziej EP, Gray JL, Sedlak DL. (2003). Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent. Environ Toxicol Chem 22: 2622-2629.

    Konneke M, Schubert DM, Brown PC, Hugler M, Standfest S, Schwander T et al. (2014). Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 111: 8239-8244.

    Kornman KS, Loesche WJ. (1982). Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun 35: 256-263.

    Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V et al. (2008). Identity, abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants. Microbiology 154: 886-894.

    Kristan K, Rizner TL. (2012). Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 129: 79-91.

    Kumar BNV, Kampe B, Rosch P, Popp J. (2015). Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy. Analyst 140: 4584-4593.

    Kumar S, Stecher G, Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870–1874
    .
    Kuntze K, Vogt C, Richnow HH, Boll M. (2011). Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 77: 5056-5061.

    Kurisu F, Ogura M, Saitoh S, Yamazoe A, Yagi O. (2010). Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. J Biosci Bioeng 109: 576-582.

    Kurisu F, Zang K, Kasuga I, Furumai H, Yagi O. (2015). Identification of estrone-degrading Betaproteobacteria in activated sludge by microautoradiography fluorescent in situ hybridization. Lett Appl Microbiol 61: 28-35.

    Lange IG, Daxenberger A, Schiffer B, Witters H, Ibarreta D, Meyer HHD. (2002). Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Anal Chim Acta 473: 27-37.

    Layton AC, Gregory BW, Seward JR, Schultz TW, Sayler GS. (2000). Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee USA. Environ Sci Technol 34: 3925-3931.

    Lee H, Liu D. (2002). Degradation of 17β-estradiol and its metabolites by sewage bacteria. Water Air Soil Poll 134: 351-366.

    Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer K-H et al. (1999). Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65: 1289-1297.

    Leimkuhler S, Stockert AL, Igarashi K, Nishino T, Hille R. (2004). The role of active site glutamate residues in catalysis of Rhodobacter capsulatus xanthine dehydrogenase. J Biol Chem 279: 40437-40444.

    Leonardo MR, Moser DP, Barbieri E, Brantner CA, MacGregor BJ, Paster BJ et al. (1999). Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol 49 Pt 4: 1341-1351.

    Le SQ, Gascuel O (2008). An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307-1320.

    Leu YL, Wang PH, Shiao MS, Ismail W, Chiang YR. (2011). A novel testosterone catabolic pathway in bacteria. J Bacteriol 193: 4447-4455.

    Li Z, Nandakumar R, Madayiputhiya N, Li X. (2012). Proteomic analysis of 17β-estradiol degradation by Stenotrophomonas maltophilia. Environ Sci Technol 46: 5947-5955.

    Liang RB, Liu H, Tao F, Liu Y, Ma C, Liu XP et al. (2012). Genome sequence of Pseudomonas putida strain SJTE-1, a bacterium capable of degrading estrogens and persistent organic pollutants. J Bacteriol 194: 4781-4782.

    Liehr JG, Wan-Fen F, Sirbasku DA, Ari-Ulubelen A. (1986). Carcinogenicity of catechol estrogens in Syrian hamsters. J Steroid Biochem 24: 353-356.

    Lin AY, Tsai YT. (2009). Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407: 3793-3802.

    Lin AY, Yu TH, Lateef SK. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. J Hazard Mater 167: 1163-1169.

    Lin AY, Lin CF, Tsai YT, Lin HH, Chen J, Wang XH et al. (2010). Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment processes in Taiwan. Water Sci Technol 62: 2450-2458.

    Lin CW, Wang PH, Ismail W, Tsai YW, El Nayal A, Yang CY et al. (2015). Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans. J Biol Chem 290: 1155-1169.

    Lin YL, Wen TN, Chang ST, Chu FH (2011). Proteomic analysis of differently cultured endemic medicinal mushroom Antrodia cinnamomea TT Chang et WN Chou from Taiwan. Int J Med Mushrooms 13: 473-481.

    Liu J, Liu J, Xu D, Ling W, Li S, Chen M. (2016). Isolation, immobilization, and degradation performance of the 17β-estradiol-degrading bacterium Rhodococcus sp. JX-2. Water Air Soil Pollut 227: 422.

    Liu L, Zhu W, Cao Z, Xu B, Wang G, Luo M. (2015). High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genomics 16: 110.

    Liu S, Ying GG, Zhao JL, Zhou LJ, Yang B, Chen ZF et al. (2012). Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants. J Environ Monitor 14: 482-491.

    Liu S, Ying GG, Liu YS, Peng FQ, He LY. (2013). Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone. Environ Sci Technol 47: 10266-10276.

    Lorenz B, Wichmann C, Stöckel S, Rösch P, Popp J. (2017). Cultivation-free Raman spectroscopic investigations of bacteria. Trends in Microbiology. Available online 7 February 2017, ISSN 0966-842X, http://dx.doi.org/10.1016/j.tim.2017.01.002.

    Lorenzen A, Hendel JG, Conn KL, Bittman S, Kwabiah AB, Lazarovitz G et al. (2004). Survey of hormone activities in municipal biosolids and animal manures. Environ Toxicol 19: 216-225.

    Lorenzen A, Chapman R, Hendel JG, Topp E. (2005). Persistence and pathways of testosterone dissipation in agricultural soil. J Environ Qual 34: 854-860.

    Lowe TM, Eddy SR. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955-964.

    Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

    Ma YF, Zhang Y, Zhang JY, Chen DW, Zhu Y, Zheng H et al. (2009). The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol 75: 6812-6819.

    Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. (2017). Brock Biology of Microorganisms, 15th edn. Pearson Education, Inc.

    Madsen SS, Skovbølling S, Nielsen C, Korsgaard B. (2004). 17-β Estradiol and 4-nonylphenol delay smolt development and downstream migration in Atlantic salmon, Salmo salar. Aquat Toxicol 68: 109-120.

    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380.

    Mechichi T, Stackebrandt E, Fuchs G. (2003). Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β-proteobacterium. Int J Syst Evol Microbiol 53: 147-152.

    Mechoulam R, Brueggemeier RW, Denlinger DL. (1984). Estrogens in Insects. Experientia 40: 942-944.
    Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L et al. (2008). The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283: 35368-35374.

    Moraru C, Lam P, Fuchs BM, Kuypers MMM, Amann R. (2010). GeneFISH - an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12: 3057-3073.

    Moschet C, Hollender J. (2009). Microbial degradation of steroid hormones in the environment and technical systems. Swiss Federal Institute of Techology, Institute of Biogeochemistry and Pollutant Dynamics.

    Musat N, Foster R, Vagner T, Adam B, Kuypers MM. (2012). Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36: 486-511.

    Muyzer G, de Waal EC, Uitterlinden AG. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695-700.

    Mycroft Z, Gomis M, Mines P, Law P, Bugg TDH. (2015). Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chem 17: 4974-4979.

    Nakai S, Yamamura A, Tanaka S, Shi J, Nishikawa M, Nakashimada Y et al. (2011). Pathway of 17β-estradiol degradation by Nitrosomonas europaea and reduction in 17β-estradiol-derived estrogenic activity. Environ Chem Lett 9: 1-6.

    Narayan KD, Pandey SK, Das SK. (2010). Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr Microbiol 61: 248-253.

    Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR et al. (2015). Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43: D130-D137.

    Nazina T, Tourova T, Poltaraus A, Novikova E, Grigoryan A, Ivanova A et al. (2001). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol 51: 433-446.

    Nielsen PH, Kragelund C, Seviour RJ, Nielsen JL. (2009). Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev 33: 969-998.

    Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T. (2004). The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci USA 101: 7931-7936.

    Ouchiyama N, Zhang Y, Omori T, Kodama T. (1993). Biodegradation of carbazole by Pseudomonas spp CA06 and CA10. Biosci Biotech Bioch 57: 455-460.

    Ouverney CC, Fuhrman JA. (1999). Combined microautoradiography–16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65: 1746-1752.

    Pandey AK, Sassetti CM (2008). Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105: 4376-4380.

    Panter GH, Thompson RS, Beresford N, Sumpter JP. (1999). Transformation of a non-oestrogenic steroid metabolite to an oestrogenically active substance by minimal bacterial activity. Chemosphere 38: 3579-3596.

    Pfennig N. (1978). Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Evol Microbiol 28: 283-288.

    Plesiat P, Nikaido H. (1992). Outer membranes of gram-negative Bacteria are permeable to steroid probes. Mol Microbiol 6: 1323-1333.

    Priest FG, Goodfellow M, Todd C. (1988). A numerical classification of the genus Bacillus. Microbiology 134: 1847-1882.

    Purdom C, Hardiman P, Bye V, Eno N, Tyler C, Sumpter J. (1994). Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8: 275-285.

    Qin D, Ma C, Hu AY, Zhang FF, Hu HB, Yu CP. (2016). Altererythrobacter estronivorus sp nov., an estrogen-degrading strain isolated from Yundang Lagoon of Xiamen City in China. Curr Microbiol 72: 634-640.

    Rabus R, Widdel F. (1995). Anaerobic degradation of ethylbenzene and other aromatic-hydrocarbons by new denitrifying bacteria. Arch Microbiol 163: 96-103.

    Radajewski S, Ineson P, Parekh NR, Murrell JC. (2000). Stable-isotope probing as a tool in microbial ecology. Nature 403: 646-649.

    Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12: R22.

    Roh H, Chu KH. (2010). A 17β-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I - characterization and abundance in wastewater treatment plants. Environ Sci Technol 44: 4943-4950.

    Roselli S, Nadalig T, Vuilleumier S, Bringel F. (2013). The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study. PLoS One 8: e56598.

    Safe S. (2004). Endocrine disruptors and human health: is there a problem. Toxicology 205: 3-10.

    Saito M, Ikunaga Y, Ohta H, Kurusu Y. (2006). Genetic transformation system for members of the genera, Sphingomonas, Sphingobium, Novosphingobium and Sphingopyxis. Microbes Environ 21: 235-239.

    Sakai M, Hosoda A, Ogura K, Ikenaga M. (2014). The Growth of Steroidobacter agariperforans sp nov., a novel agar-degrading bacterium isolated from soil, is enhanced by the diffusible metabolites produced by bacteria belonging to Rhizobiales. Microbes Environ 29: 89-95.

    Sang YY, Xiong GM, Maser E. (2012). Identification of a new steroid degrading bacterial strain H5 from the Baltic Sea and isolation of two estradiol inducible genes. J Steroid Biochem 129: 22-30.

    Saravanabhavan G, Helleur R, Hellou J. (2009). GC-MS/MS measurement of natural and synthetic estrogens in receiving waters and mussels close to a raw sewage ocean outfall. Chemosphere 76: 1156-1162.

    Saunders AM, Albertsen M, Vollertsen J, Nielsen PH. (2016). The activated sludge ecosystem contains a core community of abundant organisms. ISME J 10: 11-20.

    Schwindt AR, Winkelman DL, Keteles K, Murphy M, Vajda AM. (2014). An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity. J Appl Ecol 51: 582-591.

    Scott AP. (2012). Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids 77: 1450-1468.

    Seviour R, Nielsen PH (2010). Microbial ecology of activated sludge. IWA publishing.

    Shareef A, Angove MJ, Wells JD, Johnson BB. (2006). Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A. J Chem Eng Data 51: 879-881.

    Shi J, Fujisawa S, Nakai S, Hosomi M. (2004). Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Research 38: 2323-2330.

    Sih CJ, Bennett RE. (1960). Enzymic dehydrogenation of steroid A ring. Biochim Biophys Acta 38: 378-379.

    Sih CJ, Bennett RE. (1962). Steroid I-dehydrogenase of Nocardia Restrictus. Biophys Acta 56: 584-592.

    Stasulli NM, Shank EA. (2016). Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry. FEMS Microbiol Rev 40: 807-813.

    Stolz A. (2014). Degradative plasmids from sphingomonads. FEMS Microbiol Lett 350: 9-19.

    Stout EP, La Clair JJ, Snell TW, Shearer TL, Kubanek J. (2010). Conservation of progesterone hormone function in invertebrate reproduction. Proc Natl Acad Sci USA 107: 11859-11864.

    Sturtevant D, Lee YJ, Chapman KD. (2016). Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotechnol 37: 53-60.

    Svatos A. (2011). Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging. Anal Chem 83: 5037-5044.

    Tamaoka J, Ha D-M, Komagata K. (1987). Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Evol Microbiol 37: 52-59.

    Tamura K. (1992). Estimation of the number of nucleotides substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9: 678-687.

    Tarlera S, Denner EB. (2003). Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the beta-Proteobacteria. Int J Syst Evol Microbiol 53: 1085-1091.

    Tarrant A, Atkinson M, Atkinson S. (2004). Effects of steroidal estrogens on coral growth and reproduction. Mar Ecol Prog Ser 269: 121-129.

    Tarrant AM, Blomquist CH, Lima PH, Atkinson MJ, Atkinson S. (2003). Metabolism of estrogens and androgens by scleractinian corals. Comp Biochem Phys B 136: 473-485.

    Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M. (1999). Behavior and occurrence of estrogens in municipal sewage treatment plants - I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225: 81-90.

    Tettelin H, Radune D, Kasif S, Khouri H, Salzberg SL. (1999). Optimized multiplex PCR: Efficiently closing a whole-genome shotgun sequencing project. Genomics 62: 500-507.

    Thayanukul P, Zang KS, Janhom T, Kurisu F, Kasuga I, Furumai H. (2010). Concentration-dependent response of estrone-degrading bacterial community in activated sludge analyzed by microautoradiography-fluorescence in situ hybridization. Water Res 44: 4878-4887.

    Tian YQ, Gao LH. (2014). Bacterial diversity in the rhizosphere of cucumbers grown in soils covering a wide range of cucumber cropping histories and environmental conditions. Microb Ecol 68: 794-806.

    Trapnell C, Pachter L, Salzberg SL. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105-1111.

    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol 28: 511-U174.

    Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnol 31: 46-53.

    Tschech A, Pfennig N. (1984). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137: 163-167.

    Turner CL. (1960). The effects of steroid hormones on the development of some secondary sexual characters in cyprinodont fishes. Trans Am Microsc Soc 79: 320-333.

    Urszula G, Izabela G, Danuta W, Sylwia Ł. (2009). Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz J Microbiol 40: 285-291.

    Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC et al. (2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104: 1947-1952.

    Vandamme P, Coenye T. (2004). Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Evol Microbiol 54: 2285-2289.

    Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C et al. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24: 673-679.

    Wang PH, Lee TH, Ismail W, Tsai CY, Lin CW, Tsai YW et al. (2013a). An oxygenase-independent cholesterol catabolic pathway operates under oxic conditions. PLoS One 8: e66675.

    Wang PH, Leu YL, Ismail W, Tang SL, Tsai CY, Chen HJ et al. (2013b). Anaerobic and aerobic cleavage of the steroid core ring structure by Steroidobacter denitrificans. J Lipid Res 54: 1493-1504.

    Wang PH, Yu CP, Lee TH, Lin CW, Ismail W, Wey SP et al. (2014). Anoxic androgen degradation by the denitrifying bacterium Sterolibacterium denitrificans via the 2,3-seco pathway. Appl Environ Microbiol 80: 3442-3452.

    Wang, Q, Garrity, GM, Tiedje, JM, Cole, JR. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267.

    Wang Y, Song Y, Thompson IP, Xu J, Huang WE. (2016). Single-cell metabolomics. Hydrocarbon and Lipid Microbiology Protocols: Single-Cell and Single-Molecule Methods, 1st edn. Springer.

    Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E et al. (1989). Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov.(formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Evol Microbiol 39: 319-333.
    Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P. (1992). Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58: 1005-1010.

    Xia Y, Kong Y, Nielsen PH. (2007). In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol Ecol 60: 156-165.

    Xia Y, Kong Y, Thomsen TR, Halkjaer Nielsen P. (2008). Identification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae ("Candidatus Epiflobacter" spp.) in activated sludge. Appl Environ Microbiol 74: 2229-2238.

    Yam KC, D'Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V et al. (2009). Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5: e1000344.

    Yamamoto A, Kakutani N, Yamamoto K, Kamiura T, Miyakoda H. (2006). Steroid hormone profiles of urban and tidal rivers using LC/MS/MS equipped with electrospray ionization and atmospheric pressure photoionization sources. Environ Sci Technol 40: 4132-4137.

    Yang CS, Chen MH, Arun AB, Chen CA, Wang JT, Chen WM. (2010). Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J Syst Evol Microbiol 60: 1158-1162.

    Yang L, Shin H-S, Hur J. (2014). Estimating the concentration and biodegradability of organic matter in 22 wastewater treatment plants using fluorescence excitation emission matrices and parallel factor analysis. Sensors 14: 1771-1786.

    Yang YY, Pereyra LP, Young RB, Reardon KF, Borch T. (2011). Testosterone-mineralizing culture enriched from swine manure: characterization of degradation pathways and microbial community composition. Environ Sci Technol 45: 6879-6886.

    Ying GG, Kookana RS, Ru YJ. (2002). Occurrence and fate of hormone steroids in the environment. Environ Int 28: 545-551.

    Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T et al. (2004). Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70: 5283-5289.

    Yu CP, Roh H, Chu KH. (2007). 17β-estradiol-degrading bacteria isolated from activated sludge. Environ Sci Technol 41: 486-492.

    Yu CP, Deeb RA, Chu KH. (2013). Microbial degradation of steroidal estrogens. Chemosphere 91: 1225-1235.

    Zang K, Kurisu F, Kasuga I, Furumai H, Yagi O. (2008). Analysis of the phylogenetic diversity of estrone-degrading bacteria in activated sewage sludge using microautoradiography-fluorescence in situ hybridization. Syst Appl Microbiol 31: 206-214.

    Zeng Q, Li Y, Gu G, Zhao J, Zhang C, Luan J. (2009). Sorption and biodegradation of 17β-estradiol by acclimated aerobic activated sludge and isolation of the bacterial strain. Environmental Engineering Science 26: 783-790.

    Zhang TD, Xiong GM, Maser E. (2011). Characterization of the steroid degrading bacterium S19-1 from the Baltic Sea at Kiel, Germany. Chem Biol Interact 191: 83-88.

    下載圖示
    QR CODE