簡易檢索 / 詳目顯示

研究生: 姚經政
Yao, Jing-Jheng
論文名稱: 機器人教學對高中生工程設計表現影響之研究
The Effect of Robot Teaching on Engineering Design Performance in Senior High School
指導教授: 張玉山
Chang, Yu-Shan
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 122
中文關鍵詞: 工程教育工程設計表現機器人教育
英文關鍵詞: engineering education, engineering design performance, robot education
DOI URL: https://doi.org/10.6345/NTNU202203315
論文種類: 學術論文
相關次數: 點閱:285下載:91
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討機器人教學對高中生工程設計表現的影響。本研究為準實驗研究,採用不等組前後測實驗設計,對象為台北市某高中高中一年級的四個班級,隨機分派為實驗組及控制組,進行教學實驗。本研究以乒乓球發射器作為教學實驗的單元,在實驗組進行機器人教學;控制組進行一般生活科技教學。本研究蒐集課程活動前的工程設計表現自我量表成績作為前測分數,課程活動後的工程設計表現自我量表成績做為後測分數。在量化資料的分析部分,利用SPSS 22.0 for Windows進行平均數、標準差、獨立樣本單因子共變數分析,最後闡明研究發現。
本研究的主要結論如下:1.機器人教學對工程設計之「限制」能力有正向影響。2.機器人教學對工程設計之「預測分析」「最佳化」能力無顯著正向影響。3.機器人教學對工程設計歷程之「定義問題」、「可行性分析」能力有正向影響。4.機器人教學對工程設計歷程之「確認需求」、「蒐集資料」、「產生想法」、「評估」、「實踐」能力無顯著正向影響。最後,本研究根據研究結果,針對機器人在高中端的教學以及後續研究,研提建議。

The Purpose of this study was to investigate the effect of Robot Teaching on Engineering Design Performance in Senior High School. A nonequivalent pretest-posttest quasi-experimental design was used in this research. The objects were four high school freshman classes selected from a city high school and randomly assigned to the experimental group and the control group. A learning activity named Table tennis launchers. The experimental was taught using robot learning, while the control group was taught using the traditional (usual) way. Participant student’s engineering design scale performances before and after the experiment were evaluated. The one-way analysis of covariance were performed in this research by SPSS 22.0 for Windows. Those main results of this research were:1. The robot learning had a positive effect on student’s “constraints” abilities. 2. The robot learning has no significant effect on student’s “optimization” and “predictive” abilities. 3. The robot learning had a positive effect on student’s “problem definition” and “feasibility analysis” abilities. 4. The robot learning has no significant effect on student’s “hypotheses confirmed”, “gather information”, “generate ideas”, “evaluation”, “working” abilities. Finally, recommendations and suggestions were addressed for implementation of robot learning and future studies based on results of this research.

中文摘要................i ABSTRACT...............iii 目錄...................v 表次...................ix 圖次...................xii 第一章 緒論.....................1 第一節 研究背景與動機............1 第二節 研究目的與待答問題.........5 第三節 名詞解釋..................6 第四節 研究範圍與限制............7 第二章 文獻探討.................11 第一節 工程教育.................11 第二節 工程設計能力..............15 第三節 機器人教學................21 第四節 相關研究現況..............25 第三章 研究設計與實施.............29 第一節 研究架構..................29 第二節 研究對象..................31 第三節 研究方法..................31 第四節 研究流程..................33 第五節 實驗設計..................34 第六節 研究工具..................35 第七節 資料處理與分析.............51 第四章 資料分析與討論..................53 第一節 機器人教學對工程設計能力之影響....53 第二節 機器人教學對工程設計歷程之影響....57 第三節 工程設計歷程的分析...............68 第五章 結論與建議................95 第一節 結論......................95 第二節 建議......................98 參考文獻.........................100 一、中文部分.....................100 二、英文部分.....................102 附錄............................109 附錄一 學習單....................109 附錄二 工程設計能力自我量表........110 附錄三 學生作品照片...............113 附錄四 課後訪問紀錄單.............114 附錄五 教案設計..................115

一、中文部分
十二年國民基本教育科技領域課程綱要委員會(2015年9月29日)。十二年國民基本教育科技領域課程綱要草案。

王成軍、沈豫浙(2010)。開展機器人教育,培養創新能力。中國地質教育,1,109-111。

費躍農、邱建、李衛民、李福明、王鑫、李商旭(2008)。早期工程體驗課程的設計與實踐。實驗技術與管理,25(12),13-16。

李彥林、郭建新、胡蓉(2010)。工程訓練課程體系中機器人模塊教學改革。實驗科學與技術,8(5),132-134。

李隆盛、林坤誼、莊善媛(2006)。高中生活科技新課程的工程趨向。課程與教學,9(1),51-60。

林坤誼(2014)。STEM科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),1。

林建良、黃臺珠、莊雪華、趙大衛(2013)。發展一延伸性CIPP課程評鑑模式運用於高瞻計畫課程:以高中機器人課程為例。科學教育學刊,21(3),237-261。

周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育月刊,41(7),51-83。

吳向宸、林穀欽、李浩榕、李振發(2013)。機電整合應用與實習。新文京圖書。

徐若婷(2014)。電腦樂高CPS教學對國小中年級學童創造力發展之研究:以原住民科學計畫課程內容為例(碩士論文)。 國立臺北教育大學,臺北市。

張玉山、楊雅茹(2014)。STEM教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。

張永康、盧玉玲(2009)。培育教師具機器人教學能力知影響因素。國民教育,50(1),64-75。

陳怡靜(2012)。從機器人競賽譚中小學生的科學素養。教師天地,178,26-29。

陳怡靜、張基成(2015)。兩岸機器人教育的現況與發展。中等教育。

國家教育研究院(2014)。十二年國民基本教育課程綱要。2017年1月08日,取自http://www.naer.edu.tw/ezfiles/0/1000/attach/15/pta_2279_8619537_09968. pdf

二、英文部分
Akagi, T., Fujimoto, S., Kuno, H., Araki, K., Yamada, S., & Dohta, S. (2015). Systematic Educational Program for Robotics and Mechatronics Engineering in OUS Using Robot Competition. Procedia Computer Science, 76, 2-8.

American Heritage Dictionary. (2012). The American Heritage Dictionary of the English Language(5th ed.). New York: Random House.

Arora, J. (2004). Introduction to optimum design. Academic Press.

Asunda, P. A., & Hill, R. B. (2007). Critical features of engineering design in technology education. Journal of industrial teacher education, 44(1), 25-48.

Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of engineering education, 96(4), 359.

Balaji, M., Balaji, V., Chandrasekaran, M., & Elamvazuthi, I. (2015). Robotic Training to Bridge School Students with Engineering. Procedia Computer Science, 76, 27-33.

Burke, B. N. (2014). The ITEEA 6E learning bydesign™ model: Maximizing informed design and inquiry in the integrative STEM classroom. Technology and Engineering Teacher, 73(6), 14-19.

Bobtsov, A. A., Pyrkin, A. A., Kolyubin, S. A., Kapitonov, A. A., Feskov, A. D., Vlasov, S. M., ... & Shavetov, S. V. (2012). Lego mindstorms nxt for students' research projects in control field. IFAC Proceedings Volumes, 45(11), 102-106.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.

Casad, B. J., & Jawaharlal, M. (2012). Learning through guided discovery: An engaging approach to K-12 STEM education. In American Society for Engineering Education. American Society for Engineering Education.

Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Beverly Hills, CA: Sage.

Do, Y. (2013). Self-selective multi-objective robot vision projects for students of different capabilities. Mechatronics, 23(8), 974-986.

Driver, R., Asoko, H., Leach, J.,Mortimer, E., & Scott, P. (1994). Constructing 186 scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.

Driver, R., & Bell, B. (1986). Students’ thinking and the learning of science: A constructivist view. School Science Review, 67(240), 443-456.

Dugger Jr, W. E. (1993). The Relationship between Technology, Science, Engineering, and Mathematics.

Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120.

EEKELS, J. (1995). Values, objectivity and subjectivity in science and engineering. Journal of Engeering Design, 6(3), 173-189.

Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692-699.

Ertas, A., & Jones, J. C. (1996). The engineering design process. New York: Wiley.

Jin, Y., & Chusilp, P. (2006). Study of mental iteration in different design situations. Design Studies, 27(1), 25-55.

Kaiser, H. F. (1974). Little jiffy, mark IV. Educational and Psychological Measurement, 34,111-117.

Kapitonov, A. A., Bobtsov, A. A., Kapitanyuk, Y. A., Sysolyatin, D. S., Antonov, E. S., Pyrkin, A. A., & Chepinskiy, S. A. (2014). Course of lab activities on control theory based on the Lego NXT. IFAC Proceedings Volumes, 47(3), 9063-9068.

Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C. N. (2015). Robotics to promote elementary education pre-service teachers' STEM engagement, learning, and teaching. Computers & Education, 91, 14-31.

Kim, S., Tsourdos, A., Oh, H., Kolaman, A., White, B., & Guterman, H. (2011). Educational hands-on testbed using Lego robot for learning guidance, navigation, and control. IFAC Proceedings Volumes, 44(1), 5170-5175.

Lewis, T. (1999). Research in technology education-some areas of need.

Makino, K., Matsuo, Y., & Ohyama, Y. (2012). Management of a lecture of robot contest for many students. IFAC Proceedings Volumes, 45(11), 336-341.

Merrill, C. (2001). Integrated technology, mathematics, and science education: A quasi-experiment. Journal of industrial teacher education, 38(3), 45-61.

Merrill, C., Custer, R., Daugherty, J., Westrick, M., & Zeng, Y. (2008). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20(1), 48-64.

Middleton, H. (2005). Creative thinking, values and design and technology education. International Journal of Technology and Design Education, 15(1), 61-71.

Müller, B. C., Reise, C., & Seliger, G. (2015). Gamification in factory management education–a case study with Lego Mindstorms. Procedia CIRP, 26, 121-126.

Nugent, G., Barker, B., Grandgenett, N., & Welch, G. (2016). Robotics camps, clubs, and competitions: Results from a US robotics project. Robotics and Autonomous Systems, 75, 686-691.

Obama, B. (2009). Remarks made by the president at the national academy of sciences annual meeting. Retrieved September 28, 2012, from http://www.whitehouse.gov/the_press_office/Remarks-by-the-President -at-the-National-Academy-of-Sciences-Annual-Meeting/

Petrina, S. (2007). Curriculum and instruction design. Advanced Teaching Methods for the Technology Classroom(online), 251-279.

Sanders, M. E. (2008). Stem, stem education, stemmania. Technology Teacher, 68(4), 20-26.

Sharma, B., Steward, B., Ong, S. K., & Miguez, F. E. (2016). Evaluation of teaching approach and student learning in a multidisciplinary sustainable engineering course. Journal of cleaner production.

Staniškis, J. K., & Katiliūtė, E. (2016). Complex evaluation of sustainability in engineering education: Case & analysis. Journal of Cleaner Production, 120, 13-20.

Rose, L. C., Gallup, A. M., Dugger Jr, W. E., & Starkweather, K. N. (2004). The second installment of the ITEA/Gallup poll and what it reveals as to how Americans think about technology: A report of the second survey conducted by the Gallup organization for the International Technology Education Association. The Technology Teacher, 64(1), S1-S1.

International Technology Education Association. (2000). Standards for technological literacy: Content for the study of technology. International Technology Education Association.

Tocháček, D., Lapeš, J., & Fuglík, V. (2016). Developing technological knowledge and programming skills of secondary schools students through the educational robotics projects. Procedia-Social and Behavioral Sciences,217, 377-381.

Tsai, C. C. (1998a). Science learning and constructivism. Curriculum and Teaching, 13, 31-52.

Tsai, C. C. (2001). Probing students’ cognitive structures in science: The use of a flow map method coupled with a meta-listening technique. Studies in Educational Evaluation, 27, 257-268.

Wilson, M. (2010). Developments in robot applications for food manufacturing.Industrial Robot: An International Journal, 37(6), 498-502.

Yoo, J. (2015). Results and outlooks of robot education in republic of Korea. Procedia-Social and Behavioral Sciences, 176, 251-254.

Zainal, N. F. A., Abdullah, S. N. H. S., & Prabuwono, A. S. (2012). Adapting robot soccer game in student self-centered learning. Procedia-Social and Behavioral Sciences, 59, 130-137.

Zuga, K. (2007). STEM and Technology Education. White Paper written for ITEA, 6. Retrieved from https:/iteea.org/mbraonly/library/whitepaper/STEM(Zuga)pdf website:

下載圖示
QR CODE