研究生: |
張龍吟 Lung-Yin Chang |
---|---|
論文名稱: |
可變電壓波形應用於陽極接合速度與品質之研究 Research on speed and quality of anodic bonding using applied voltage with various waveforms |
指導教授: |
楊啓榮
Yang, Chii-Rong |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 陽極接合 、可變電壓波形 、電極形狀 |
英文關鍵詞: | anodic bonding, variable voltage waveform, electrode shape |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陽極接合技術常被應用於微機電元件的組裝,是目前微機電製程中相當倚重的一種接合技術,其主要藉由離子鍵結的方式來達到接合的目的,故兩接合表面平整度要求非常高,屬於無介質的接合方式。在接合過程中,輸出電壓大小、溫度高低、電極形式等,皆是影響接合率和品質的重要因素。在不同的電壓輸出形式上,亦可造成不同的接合效果,原因是當通入一般常用定電壓輸出時,其所產生的接合電流瞬間達到最高峰,此狀態亦將隨著時間的增加而產生遞減現象。若選用可變電壓波形輸出時,將可促使瞬間最大接合電流,重覆維持在一高峰值,進而大幅提升接合率與接合品質。實驗結果證實,利用輻射狀電極在方波可變電壓波形之平均電壓250 V、週期時間8 s、溫度400 °C、接合時間200秒,進行四吋全片接合時,接合良率可達99.2 左右%。
其次本研究也研發一種新型的圓錐截頭體電極,搭配可變電壓波形輸出形式,除了可使接合電流維持在一高峰值,縮短其所需接合時間外,也可在較低電壓輸出的條件下,達到快速接合,且擁有與定電壓輸出形式相同的接合品質。實驗結果證實,利用圓錐截頭體電極搭配定電壓輸出,設定平均電壓800 V、溫度400 °C條件下,進行四吋全片接合時,接合時間約15秒,且接合良率可達99.89 %左右。利用圓錐形電極搭配方波可變電壓波形輸出,設定平均電壓250 V、週期時間8 s、溫度400 °C條件下,進行四吋全片接合時,接合時間約15秒,接合良率可達72.93 %。利用方波可變電壓與定電壓波形,搭配圓錐截頭體電極進行實驗時,因為受硬體設備之限制,導致實驗過程中,輸出電壓均無法到達設定值,但其實驗結果仍達到預期的目標。
Anodic bonding technique is important and is often used in package of MEMS components. It uses ionic bond to obtain bonding results. Surface level of silicon and glass need to be very serious, and the technique belong to non-media bonding. There are important factors of bonding ratio and quality in bonding process, such as applied voltage, temperature, and type of electrode etc. In different forms of applied voltage, it causes different bonding results. The reason is described as follow: the maximum of bonding current by using constant voltage waveform would be decayed when the bonding time is increasing, but it will be kept at a high value by using variable voltage waveform and to improve bonding ratio and quality widely. The research improves that using radiate-line electrode with square voltage waveform to bonding 4 inch wafer, bonding ratio can reach 99.2% when the average voltage is 250 V, period is 8 sec, temperature is 400 ºC, and bonding time is 200 sec.
In this research, we develop a novel conical frustum electrode to co-operate variable voltage waveform for anodic bonding. It not only can keep bonding current at a high value to decrease bonding time, but also can have the same bonding quality with the results of applied constant voltage. The research improves that using novel electrode with constant voltage waveform to bonding 4 inch wafer, bonding ratio can reach 99.98% when the average voltage is 800 V, temperature is 400 ºC, and bonding time is 15 sec. Using the novel electrode with square voltage waveform to bonding 4 inch wafer, bonding ratio only can reach 72.93% when the average voltage is 250 V, period is 8 sec, temperature is 400 ºC, and bonding time is 15 sec. The efficiency of bonding system is limited when using square or constant voltage waveforms to co-operate the conical frustum electrode. Although it causes output voltage can not reach the setting value in bonding process, the research still can achieve the expecting purpose.
1. 楊啟榮等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章,
pp. 142 (2003).
2. V. Dragoi, M. Alexe, M. Reiche, and U. M. Gösele, ECS Meeting Abtracts, MA 99-2, 972 (1999).
3. 楊啟榮等人, "微機電系統技術與應用", 精密儀器發展中心, 第十章,
pp. 791 (2003).
4. F. Secco d’Aragona, T. Iwamoto, H.-D. C. Chiou, and A. Mizza, ECS Meeting Abtracts, MA 97-2, 2052 (1997).
5. G. Wallis and D. I. Pomerantz, J. Appl. Phys., 40, 3946 (1969).
6. G. Klink and B. Hillerich, SPIE Conf. On Micromachined Devices and Components, Santa Clara, CA SPIE 3512, pp.50-61 (1998).
7. S. Shoji, H. Kikuchi and H. Torigoe, “Low-temperature anodic bonding using lithium aluminosilicate-β-quartz glass ceramic”, Sensors and Actuators, A64, 95-100 (1998).
8. Y. Kana . K. Mazunori, C. Muradnm, and J. Sugaya, Sensors and Actuators, A21-23, 939 (1990).
9. M. Despont, H. Gross, F. Arrouy, C. Stebler and U. Staufer, “Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding”, Sensors and Actuators, A55, pp.219-224 (1996).
10. K. B. Albaugh, “Rate processer during anodic bonding”, J. Am. Ceram. Soc, V75, pp.2644 (1992).
11. M. A. Morsy, K. Ikenchi, M. Ushio and H. Abe, “Mechanism of enlargement of intimately contacted area in anodic bonding of kovar alloy to borosilicate glass”, Material Transaction JIM, V37, pp.1511 (1996).
12. T. R. Anthony, “Anodic bonding of imperfect surfaces, J. Appl. Phys., 54, pp.2419-2428 (1983).
13. 邱國麟, "射頻磁控濺鍍金屬膜於矽晶片與Pyrex 7740玻璃陽極接合之研究", 彰化師範大學機電工程學系, 碩士論文, pp. 10-15 (2004).
14. K. B. Albaugh and P. E. Cade, “Mechanisms of anodic bonding of silicon to Pyrex glass”, IEEE, 88, pp.109-110 (1988).
15. M. H. Lee, I. M. Hsing “An improved anodic bonding process using pulsed voltage technique”, Journal of Microelectromechanical System, pp.469-473 (2000).
16. T. Michael, Anordnung von Elektroden zum anodischen bonden, DE 4423164 A1, 11.1 (1996).
17. T. Michael, Anordnung von Elektroden zum anodischen bonden, DE 4426288 A1, 18.4 (1996).
18. 楊學安, "快速與局部加熱於陽極接合品質的研究應用", 台北科技大學製造科技研究所, 碩士論文, pp. 12-13 (2002).
19. 楊學安,黃榮堂,趙中興, 一種陽極接合的電極分部的方式, 中華民國專利, 發明第164313號.
20. 吳俊緯, "電弧放電應用於陽極接合速度與品質之研究", 國立臺灣師範大學機電科技學系, 碩士論文 (2007).
21. M. A. Schmidt, “Wafer-to-wafer bonding for microstructure formation”, IEEE, pp.1575-1585 (1998).
22. J. Wei, H. Xie, M. L. Nai, C. K. Wong and L. C. Lee, “Low temperature wafer anodic bonding”, J. Micromech. and Microeng., pp.217-222 (2003).
23. 陳凱林, "半導體濺鍍靶材製程技術與薄膜特性", 工業雜誌, 第19期(2003).
24. Q. Y. Tong and U. Gosele “Semiconductor wafer bonding science and technology”, John Wiley & Sons INC. USA (1999).
25. B. Puers and D. Lapadatu, “Extremely miniaturized capacitive movement sensors using new suspension systems ”, Sensors and Actuators, A41-A42 129-35 (1994).
26. A. Cozma and B. Puers, “Characterization of the electrostatic bonding of silicon and Pyrex glass”, J. Micromech. and Microeng., pp.98-102 (1995).
27. B. Puers, E. Peeters, A. Van Der Bossche and W. Sansen ,, “A capacitive pressure sensor with low impedance output and active suppression of parasitic effect”, Sensors and Actuators, A21-A23 108-14 (1990).
28. M. C. Lee, S. J. Kang, K. D. Jung, S. H. Choa Y. C. Cho, “A high yield rate MEMS gyroscope with a packaged SiOG process”, J. Micromech. and Microeng., pp.2003-2010 (2005).
29. G. W. Hsieh, C. H. Tsai, W. C. Lin, “Anodic bonding of glass and silicon wafers with an intermediate silicon nitride film and its application to batch fabrication of SPM tip arrays”, J. Micromech. and Microeng., pp.678-682 (2005).