Author: |
楊淑媚 Yang, Shu-Mei |
---|---|
Thesis Title: |
第一部份 使用含有 α, β-不飽和酮衍生物與不同的親電性試劑進行有機不對稱催化反應 / 第二部份 由多官能性的磷兩性離子經由分子內選擇性的 Wittig 反應合成多取代苯并呋喃和呋喃[3,2-c]香豆素 Asymmetric organocatalysis reactions of various electrophiles and α,β-unsaturated ketones / Chemoselective synthesis of substituted benzofurans and furo[3,2-c]coumarins from functional phosphorus zwitterions via intramolecular Wittig reactions |
Advisor: |
林文偉
Lin, Wen-Wei |
Degree: |
博士 Doctor |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2019 |
Academic Year: | 107 |
Language: | 中文 |
Number of pages: | 757 |
Keywords (in Chinese): | 有機不對稱催化 、苯并哌喃 、苯并呋喃 、呋喃香豆素 、兩性離子 |
Keywords (in English): | Asymmetric Organocatalytic, Chromeno[3,4-d]pyrrole, benzofurans, furo[3,2-c]coumarins, zwitterion |
DOI URL: | http://doi.org/10.6345/NTNU201900030 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 178 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
本論文分為兩大部分,第一部份:使用含有 α, β-不飽和酮衍生物與不同的親電性試劑進行有機不對稱催化反應,其包含三章,依序介紹如下:
第一章 用鄰羥基芳醛亞胺衍生物對 1, 3-茚二酮衍生物進行 [3+2] Cycloaddition / Double Acetalization / Lactonization Cascade 合成具有五個四級碳中心的產物
利用鄰羥基芳醛亞胺衍生物 63 和 1, 3-茚二酮衍生物 45 使用接有方醯胺基片段的奎尼丁催化劑作用下,可先進行一個 [3+2] 環加成後再進行 Double acetalization / Lactonization 的串聯反應,可以得到單一非鏡像異構物且產率可達 97%,而鏡像超越值也達 99%,具有六個立體中心,其中的五個為四級碳結構。
第二章 使用 3-亞烷基羥吲哚衍生物對 1, 3-茚二酮衍生物進行 Vinylogous Michael / Acetalization / oxa-Michael / Michael Cascade 合成含有五個四級碳中心的化合物
利用 1, 3-茚二酮衍生物 45 和 3-亞烷基羥吲哚衍生物 129 使用接有硫脲片段的奎寧催化劑,在溫和的反應條件下,可進行 Vinylogous Michael addition / Acetalization / oxa-Michael addition / Michael addition 的不對稱串聯反應,產率最好可達 92%,鏡像超越值有 98%,產物結構具有六個立體中心,其中的五個為四級碳結構。
第三章 以α, β-不飽和丁內醯胺衍生物與香豆素衍生物進行有機催化之研究
一新穎的催化 Michael 加成-異構化反應,有效地合成 Rauhut-Currier 類型的產物,此反應得到少見的γ-不飽和丁內醯胺進行 α位置加成產物,並擁有很好的非鏡像選擇性。此反應還能進一步經由水解後脫脫羧,得到不能由一般查耳酮合成出的α位置加成產物。
第二部分:由多官能性的磷兩性離子經由分子內選擇性的 Wittig 反應合成多取代苯并呋喃和呋喃[3,2-c]香豆素
利用一種具有高效能和化學選擇性的一鍋化合成策略,進行兩種以香豆素結構為基底的交叉偶聯化合物(呋喃[3,2-c]香豆素及苯并呋喃衍生物)的多樣性合成,其關鍵在於官能化磷兩性離子的初始化學選擇性醯化反應,其與醯化試劑的相對反應活性高低及添加順序有關,最後進行化學選擇性分子內 Wittig 反應以合成出其中一種香豆素衍生物。
This thesis is divided into two parts, first part is asymmetric organocatalysis reactions of various electrophiles and α, β-unsaturated ketones, which including three chapters:
Chapter 1:Asymmetric Organocatalytic [3+2] Cycloaddition / Double Acetalization / Lactonization Cascade Reaction of o-Hydroxyl aromatic aldimine with 1, 3-indandione derivatives: Synthesis of products with five Chiral Quaternary Stereocenters.
A sequential [3+2] cycloaddition then double acetalization and lactonization resulting in the cascade product 64 using o-Hydroxyl aromatic aldimine 63 and 1, 3-indandione derivatives 45, bearing six including five quaternary stereocenters was obtained as a single diasteromer in up to 97% yield and 99% ee.
Chapter 2:Asymmetric Organocatalytic Vinylogous Michael / Acetalization / oxa-Michael / Michael Cascade Reaction of 3-Alkylidene Oxindoles with 1, 3-indandione derivatives: Synthesis of products with five Chiral Quaternary Stereocenters.
A Vinylogous Michael / Acetalization / oxa-Michael / Michael Cascade Reaction resulting in the cascade product 130 using 3-Alkylidene Oxindoles 129 and 1, 3-indandione derivatives 45, bearing six including five quaternary stereocenters was obtained as a single diasteromer in up to 92% yield and 98% ee.
Chapter 3:Organocatalysis of α,β-unsaturated γ-butyrolactam and coumarin derivatives.
A novel, base-catalyzed and highly diastereoselective direct Michael addition-isomerization sequence is presented for the efficient synthesis of Rauhut-Currier-type adducts. It was quite unexpected to see the α-addition of γ-butyrolactam onto the 3-acyl coumarin derivatives rather than the γ-addition, which is more common. The adducts could further undergo hydrolysis/decarboxylation to generate the products which are equivalent to those obtained by α-addition of γ-butyrolactam onto the corresponding chalcones.
Part II. An Efficient Synthesis of furo[3,2-c]coumarins and 3-benzofuranyl chromenones via Chemoselective O-Acylations and Intramolecular Wittig Reactions.
A highly efficient and chemoselective one-pot protocol for the diversity-oriented synthesis of two coumarin-based formal cross-coupling adducts, viz. furo[3,2-c]coumarins and 3-benzofuranyl chromenones is described. Key attributes of the methodology comprise an initial chemoselective acylation of functionalized phosphorus zwitterions followed by chemoselective intramolecular Wittig reaction that preferentially resulted in one of the two coumarin derivatives in high yields, depending on relative reactivities and addition sequence of acylating agents.
1-5. 參考文獻
[1] Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
[2] For selected reviews on the generation of chiral quaternary stereocenters employing cascade/domino strategies, see: a) Vetica, F.; de Figueiredo, R. M.; Orsini, M.; Tofani, D.; Gasperi, T. Synthesis 2015, 47, 2139; b) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237; c) Buschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E. Angew. Chem. Int. Ed. 2016, 55, 4156; d) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.
[3] a) Tan, B.; Candeias, N. R.; Barbas III C. F. Nat. Chem. 2011, 3, 473; b) Sun, Q.-S.; Lin, H.; Sun, X.; Sun, X.-W. Tetrahedron Lett. 2016, 57, 5673.
[4] a) Barnes-Seeman, D.; Corey, E. J. Org. Lett. 1999, 1, 1503; b) Nicolaou, K. C.; Simonsen, K. B.; Vassilikogiannakis, G.; Baran, P. S.; Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A. Angew. Chem. Int. Ed. 1999, 38, 3555; c) Nicolaou, K. C.; Vassilikogiannakis, G.; Simonsen, K. B.; Baran, P. S.; Zhong, Y.-L.; Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A. J. Am. Chem. Soc. 2000, 122, 3071; d) Elliott, G. I.; Velcicky, J.; Ishikawa, H.; Li, Y. K.; Boger, D. L. Angew. Chem. Int. Ed. 2006, 45, 620.
[5] Shibata, T.; Tahara, Y.-K.; Tamura, K. & Endo, K. J. Am. Chem. Soc. 2008, 130, 3451.
[6] Rendler, S. & MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.
[7] Watson, M. P. & Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
[8] Garcı’a-Fortanet, J.; Kessler, F. & Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 6676.
[9] Sidera, M.; Roth, P. M. C.; Maksymowicz, R. M. & Fletcher, S. P. Angew. Chem. Int. Ed 2013, 52, 7995.
[10] Mendoza, A.; Ishihara, Y. & Baran, P. S. Nature Chem. 2012, 4, 21.
[11] Trost, B. M.; Malhotra, S.; Chan, W. H. J. Am. Chem. Soc. 2011, 133, 7328.
[12] Zhang, H.; Hong, L.; Kang, H.; Wang, Rui. J. Am. Chem. Soc. 2013, 135, 14098.
[13] Kleinbeck, F.; Toste, F. D., J. Am. Chem. Soc. 2009, 131, 9178.
[14] Wagner, G., J. Russ. Phys. Chem. Soc. 1899, 31, 690.
[15] Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 55, 3001.
[16] Snyder, S. A. & Corey, E. J. J. Am. Chem. Soc. 2006, 128, 740.
[17] Trost, B. M.; Bringley, D. A.; Zhang, T. & Cramer, N. J. Am. Chem. Soc. 2013, 135, 16720.
[18] Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304.
[19] Li, Tian; Xu, G. Q.; Li, T. H.; Liang, T. M.; Xu, P. F. Chem. Commun. 2014, 50, 2428.
[20] Kowalczyk, D.; Albrecht, L. J. Org. Chem., 2016, 81, 6800.
[21] Chang, G. H.; Wang, C. Y.; Reddy, G. M.; Tsai, Y. L.; Lin, W. J. Org. Chem. 2016, 81,
10071.
[22] Zhang, L. J.; Wang, Y.; Hu, X. Q.; Xu, P. F. Chem. Asian J. 2016, 11, 834.
2-7. 參考文獻
[1] Millemaggi, A.; Taylor, R. J. K. Eur. J. Org. Chem. 2010, 2010, 4527.
[2] Lee, J. H.; Lee, S.; Yu, J.; Kim, J. N. Tetrahedron Lett. 2014, 55, 2450.
[3] Liu, Y.; Yang, Y.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Synlett 2015, 26, 67.
[4] Ranieri, B.; Sartori, A.; Curti, C.; Battistini, L.; Rassu, G.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Org. Lett. 2014, 16, 932.
[5] Han, J. L.; Chang, C. H. Chem. Commun. 2016, 52, 2322.
[6] Feng, J.; Li, X.; Cheng, J.-P. Chem. Commun. 2015, 51, 14342.
[7] For a couple of brilliant examples where similar ylides were generated in situ by isatin-derived MBH carbonates and used in subsequent [2+1] and [3+2] annulations; see: (a) Wang, K.-K.; Wang, P.; Ouyang, Q.; Du, W.; Chen, Y.-C. Chem. Commun. 2016, 52, 11104. (b) Zhan, G.; Shi, M.-L.; He, Q.; Lin, W.-J.; Ouyang, Q.; Du, W.; Chen, Y.-C. Angew. Chem. Int. Ed. 2016, 55, 2147.
[8] Lingam, K. A. P.; Shanmugam, P.; Selvakumar, K. Synlett 2012, 23, 278.
[9] Curti, C.; Rassu, G.; Zambrano, V.; Pinna, L.; Pelosi, G.; Sartori, A.; Battistini, L.; Zanardi, F.; Casiraghi, G., Angew. Chem. Int. Ed., 2012, 51, 6200.
[10] Zhong, Y.; Ma, S.; Xu, Z.; Chang, M.; Wang, R. RSC Adv. 2014, 4, 49930.
[11] Di Iorio, N.; Righi, P.; Ranieri, S.; Mazzanti, A.; Margutta, R. G.; Bencivenni, G. J. Org. Chem. 2015, 80, 7158.
[12] Das, U.; Chen, Y. R.; Tsai, Y. L.; Lin, W., Chem. Eur. J., 2013, 19, 7713.
[13] Chen, Y. R.; Das, U.; Liu, M. H.; Lin, W., J. Org. Chem., 2015, 80, 1985.
[14] Mohlmann, L.; Chang, G. H.; Reddy, G. M.; Lee, G. J.; Lin, W. Org. Lett., 2016, 18, 688.
[15] Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304.
3-6. 參考文獻
[1] (a) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. RSC Advances 2015, 5, 15233. (b) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
[2] Krause, W.; Kühne, G.; Sauerbrey, N. Eur. J. Clin. Pharmacol, 1990, 38, 71.
[3] Kalir, A.; Edery, H.; Pelah, Z.; Balderman, D.; Porath, G. J. Med. Chem. 1969, 12,
473.
[4] Ramireddy, N.; Zhao, J. C. G. Tetrahedron Lett. 2014, 55, 706.
[5] Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem.
Soc. 2010, 132, 3666.
[6] Huang, H.; Jin, Z.; Zhu, K.; Liang, X.; Ye, J. Angew. Chem. Int. Ed. 2011, 50, 3232.
[7] Gu, X.; Guo, T.; Dai, Y.; Franchino, A.; Fei, J.; Zou, C.; Dixon, D. J.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 10249.
[8] Zhang, J.; Liu, X.; Ma, X.; Wang, R. Chem. Commun. 2013, 49, 3300.
[9] Duan, Z.; Zhang, Z.; Qian, P.; Han, J.; Pan, Y. RSC Adv. 2013, 3, 10127.
[10] Shao, C.; Yu, H.-J.; Wu, N.-Y.; Tian, P.; Wang, R.; Feng, C.-G.; Lin, G.-Q. Org.
Lett. 2011, 13, 788.
[11] Baussanne, I.; Chiaroni, A.; Husson, H. P.; Riche, C.; Royer, J. Tetrahedron Lett. 1994, 35, 3931.
[12] Lin, S.; Kumagai, N.; Shibasaki, M. Chem. Eur. J. 2016, 22, 3296-3299.
[13] Modranka, J.; Albrecht, A.; Jakubowski, R.; Krawczyk, H.; Różalski, M.;
Krajewska, U.; Janecka, A.; Wyrębska, A.; Różalska, B.; Janecki, T. Biorg. Med. Chem. 2012, 20, 5017.
[14] Roelens, F.; Huvaere, K.; Dhooge, W.; Van Cleemput, M.; Comhaire, F.; De Keukeleire, D. Eur. J. Med. Chem. 2005, 40, 1042.
[15] Chen, Y.-R.; Das, U.; Liu, M.-H.; Lin, W. J. Org. Chem. 2015, 80, 1985.
[16] Curti, C.; Sartori, A.; Battistini, L.; Rassu, G.; Burreddu, P.; Zanardi, F.; Casiraghi,
G. J. Org. Chem. 2008, 73, 5446.
[17] Jang, Y.-J.; Syu, S.-e.; Chen, Y.-J.; Yang, M.-C.; Lin, W. Org. Biomol. Chem.
2012, 10, 843.
[18] Wang, Y.; Yu, Z.-H.; Zheng, H.-F.; Shi, D.-Q. Org. Biomol. Chem. 2012, 10, 7739.
[19] Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M. J.; Herrera-Morales, A.;
Villamena, F. A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte,
E. J. Med. Chem. 2013, 56, 6136.
[20] Sairam, M.; Saidachary, G.; Raju, B. C. Tetrahedron Lett. 2015, 56, 1338.
4-7. 參考文獻
[1] ( a) Burke, M. D.; Schreiber, S. L. Angew. Chem. Int. Ed. 2004, 43, 46. (b) Horton, A. H.; Bourne, G. T. M.; Smythe, L. Chem. Rev. 2003, 103, 893. (c) Spandl, R. J.; Bender, A.; Spring, D. R. Org. Biomol. Chem. 2008, 6, 1149. (d) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Nat. Commun. 2010, 1, 80. (e) Collins, I.; Jones, A. M. Molecules 2014, 19, 17221. (f) Lenci, E.; Guarna, A.; Trabocchi, A. Molecules 2014, 19, 16506. (g) O' Connor, C. J.; Beckmann, H. S. G.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 4444. (h) H. Eckert. Molecules 2012, 17, 1074.
[2] (a) Welsch, M. E.; Snyder, S. A.; Stockwel, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347. (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G.-Q.; Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939. (c) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling ,P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235. (d) Zhao, H.; Dietrich, J. Expert Opin. Drug Discov. 2015, 10, 781.
[3] (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59. (b) Itoigawa, M.; Ito, C.; Tan, H. T.-W.; Kuchide, M.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer Lett. 2001, 169, 15. (c) Yamaguchi, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. Tetrahedron Lett. 2006, 47, 3755. (d) Yamamoto, Y.; Kurazono, M. Bioorg. Med. Chem. Lett. 2007, 17, 1626. (e) Kayser, O.; Kolodziej, H. Planta Med. 1997, 63, 508. (f) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. L.; Tseng, T. H. Cancer Lett. 2002, 183, 163. (g) Hamulakova, S.; Kožurková, M.; Kuca, K. Curr. Org. Chem. 2017, 21, 602. (h) Jameel, E.; Umar, T.; Kumar, J.; Hoda, N. Chem. Biol. Drug Des. 2016, 87, 21.
[4] ( a) Lin, W.; Huang, J.; Liao, X.; Yuan, Z.; Feng, S.; Xie, Y.; Ma, W. Pharmacol. Res. 2016, 111, 849. (b) Wang, X.; Bastow, K. F.; Don, M. J.; Lin, Y. L.; Wu,T. S.; Lee, K, H.; J. Med. Chem. 2006, 49, 5631. (c) Dong, Y.; Shi, Q.; Goto, K. N.; Wu, P. C.; Bastow, K. F.; Natschke, S. L. M.; Lee, K. H. Bioorg. Med. Chem. Lett. 2009, 19, 6289. (d) Sashidhara, K. V.; Rosaiah, J. N.; Kumar, M.; Gara, R. K.; Nayak, L. V.; Srivastava, K.; Bid, H. K.; Konwar, R. Bioorg. Med. Chem. Lett. 2010, 20, 7127.
[5] (a) Khan, A.; Kulkarni, M. V.; Gopal, M.; Shahabuddin, M. S.; Sun, C. M. Bioorg. Med. Chem. Lett. 2005, 15, 3584. (b) Chougala, B. M.; Shastri, S. L.; Holiyachi, M.; Shastri, L. A.; More, S. S.; Ramesh, K. V. Med. Chem. Res. 2015, 24, 4128.
[6] (a) Teague, S. J.; Davis, A. M.; Leeson, P. D.; Oprea, T.; Angew. Chem. Int. Ed. 1999, 38, 3743. (b)
Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123. (c) Schreiber, S. L. Science 2000, 287, 1964. (d) Liu, R.; Li, X.; Lam, K. S.; Curr. Opin. Chem. Biol. 2017, 38, 117.
[7] Chu, X.; Tang, Z.; Ma, J.; He, L.; Feng, L.; Ma, C. Tetrahedron 2018, 74, 970.
[8] A. Y. Dubovtsev, P. S. Silaichev, M. A. Nazarov, M. V. Dmitriev, A. N. Maslivets, M. Rubin, RSC
Advances 2016, 6, 84730.
[9] C. Uchiyama, Y. Miyadera, Y. Hayashi, F. Yakushiji ChemistrySelect. 2017, 2, 3794.
[10] A. R. Kaneria, R. R. Giri, V. G. Bhila, H. J. Prajapati, D. I. Brahmbhatt, Arab. J. Chem. 2017, 10,
S1100.
[11] X. Chu, Z. Tang, J. Ma, L. He, L. Feng, C. Ma, Tetrahedron 2018, 74, 970.
[12] K. Chand, Rajeshwari, A. Hiremathad, M. Singh, M. A. Santos, R. S. Keri, Pharmacol. Rep. 2017,
69, 281.
[13] A. A. Abu-Hashem, H. A. R. Hussein, A. S. Aly, M. A. Gouda, Synth. Commun. 2014, 44, 2285.
[14] Syu, S.-E.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Org. Lett. 2011, 13, 2970.
[15] Lee, Y.-T.; Jang, Y.-J.; Syu, S.-E.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Commun. 2012, 48, 8135.
[16] Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Biomol. Chem.
2013, 11, 5156.
[17] Lee, C.-J.; Jang, Y.-J.; Wu, Z.-Z.; Lin, W. Org. Lett. 2012, 14, 1906.
[18] Mandal, S.; Dwari, S.; Jana, C. K. J. Org. Chem. 2018, 83, 8874.