簡易檢索 / 詳目顯示

研究生: 歐威志
Ou, Wei-Zhi
論文名稱: 製備高產率金奈米雙三角錐及其選擇性二氧化矽包覆之研究
The Study of Production of High Yield Gold Nanobipyramid and Site-Selective Silica Coating
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 金奈米雙三角錐金奈米棒表面電漿共振
英文關鍵詞: Gold Nanobipyramids, Gold Nanorods, Localized Surface Plasmon Resonance
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.032.2018.B05
論文種類: 學術論文
相關次數: 點閱:225下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金奈米雙三角錐(Gold Nanobipyramids, AuNBPs)具有比金奈米棒(Gold Nanorods, AuNRs)更佳的光學性質,其兩端的尖點擁有比金奈米棒的兩端點更強的電場,因此有利於應用在光學及奈米醫學方面上。本實驗成功合成出不同波長的金奈米雙三角錐,但由於利用晶核成長法(seed-mediated growth method)所合成出的奈米粒子,其中金奈米雙三角錐的產率不到50%,因此利用benzyldimethylhexadecylammonium chloride (BDAC)進行純化的步驟,使金奈米雙三角錐的產率提高至90%以上,不僅如此,還另外測試出另一純化方法:將未純化的金奈米雙三角錐的溶液過度生長,使金奈米雙三角錐變成有銀包覆在外的銀棒,金奈米顆粒變成有銀包覆的銀顆粒,再利用顆粒大小不同使其分離,最後再利用氨水及雙氧水蝕刻掉銀的部分,兩種方法都能得到高產率的金奈米雙三角錐。接著,將金奈米雙三角錐以及另外合成出的金奈米棒在兩端分別修飾上8-arm PEG-LA,再包覆二氧化矽在其邊上,形成像大亨堡的形狀,以及在金奈米雙三角錐和金奈米棒四周包覆上二氧化矽。由於侷域化表面電漿共振的現象,金奈米棒及金奈米雙三角錐的端點可以提供較強的電場環境,這些電場被高度增強的熱點(Hot Spot)處如果修飾上螢光分子,可以放出較強的螢光,抑或是曝露於相對應波長的雷射探討其光熱轉換效率。由於二氧化矽選擇性包覆在金奈米顆粒上,可以使得未來在修飾上螢光分子上能集中在端點,又金奈米雙三角錐的尖端電場比金奈米棒的端點電場還強,可以被預期金奈米雙三角錐的螢光增強倍率會大於金奈米棒。

    Gold nanobipyramids (AuNBPs) possess better optical properties than gold nanorods (AuNRs), and the sharp tips at both ends have a stronger electric field than the ends of the AuNRs. Therefore, this feature has made AuNBPs favorable for an enormous number of potential applications in areas including optics and nanomedicine. In this study, we successfully synthesized AuNBPs with different longitudinal plasmon resonance wavelengths (LPRWs). Due to the seed-mediated growth method we use to synthesis AuNBPs, the yield of AuNBPs is less than 50. %. Thus, benzyldimethylhexadecylammonium chloride (BDAC) was chosen for the purification. It made the yield of AuNBPs raise up more than 90%. Additionally, we also tested another method for AuNBPs purification. To address the problem of AuNBPs purification, we execute Ag overgrowth to obtain bimetallic Au/Ag nanocrystals by adding AgNO3 in the presence of cetyltrimethylammonium chloride (CTAC). Ag overgrowth on the NBPs and spherical Au nanoparticles form Au/Ag heteronanorods and (Au core)@(Ag shell), respectively. And then we depend on the size of nanoparticles to separate. Finally, the Ag segments are etched away using ammonia solution and hydrogen peroxide. Both of method can get high yield of AuNBPs. Next, AuNBPs and additionally synthesized AuNRs are respectively modified on the two ends with 8-arm PEG-LA, and then coated with silicon dioxide on their sides to form a shape like “hot dog”. Another shape is synthesized which is coated with silicon dioxide around AuNBPs and AuNRs to form ellipse. Due to the phenomenon of localized surface plasmon resonance (LSPR), the ends of AuNRs and AuNBPs can provide a strong electric field environment. The hot pots where electric fields are highly enhanced are modified with fluorescent molecules, the ends of them can enhance the intensity of the fluorescent light. We can also discuss photothermal effect while they exposed to lasers with corresponding wavelengths. Since silica dioxide is selectively coated on the side of gold nanoparticles, the fluorescent molecules can be concentrated at the end points, and the electric field of tips of AuNBPs is stronger than the end of AuNRs. We can expect that the fluorescent enhancement of AuNBPs will be greater than AuNRs.

    謝誌 I 摘要 II Abstract III 目錄 V 圖表目錄 VIII 第一章 緒論 1 1-1 奈米技術的興起 1 1-2 奈米材料的製作 3 1-3 奈米材料的基本性質 6 1-4 奈米材料的應用 9 第二章 文獻回顧與動機 11 2-1 金屬奈米粒子之侷域性表面電漿共振之現象 11 2-2 金奈米雙三角錐的合成 13 2-3 金奈米雙三角錐的純化 15 2-4 金奈米棒的合成 17 2-5 金奈米雙三角錐與金奈米棒的差異 18 2-6 研究動機 20 第三章 實驗設備與步驟 21 3-1 實驗藥品 21 3-2 實驗儀器設備介紹 23 3-2-1 冷凍真空乾燥機(Freeze Dryer) 23 3-2-2 通用型離心機(Universal Centrifuges) 24 3-3 分析儀器介紹及基本原理 25 3-3-1 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 25 3-3-2 酸鹼度測試計(pH-meter) 26 3-3-3 核磁共振(NMR, Nuclear Magnetic Resonance) 27 3-3-4 紫外-可見光分光光譜儀 29 3-4 實驗步驟 30 3-4-1 金奈米雙三角錐之合成 30 3-4-2 金奈米雙三角錐之純化 32 3-4-3 硫基化聚乙二醇(8 arm-PEG-LA)之合成 35 3-4-4 AuNBP/side-sSiO2之合成 36 3-4-5 Core−Shell AuNBP@SiO2之合成 38 3-4-6 金奈米棒之合成 39 3-4-7 AuNR/side-mSiO2之合成 41 3-4-8 Core−Shell AuNR@SiO2之合成 43 第四章 結果與討論 45 4-1 金奈米雙三角錐鑑定與光譜分析 45 4-1-1 金奈米雙三角錐之形狀與光譜分析 45 4-1-2 金奈米雙三角錐之純化 47 4-1-3 硫基化聚乙二醇(8 arm-PEG-LA)之鑑定 54 4-1-4 二氧化矽包覆金奈米雙三角錐 56 4-2 金奈米棒鑑定與光譜分析 59 4-2-1 金奈米棒之形狀與光譜分析 59 4-2-2 二氧化矽包覆金奈米棒 60 4-3 CTAB對金奈米雙三角錐的重要性 63 第五章 結論與未來展望 65 第六章 參考文獻 67

    一、中文文獻
    牟中原、陳家俊,科學發展 2000,28 (4),281-288。

    二、英文文獻
    Feng, J.; Chen, L.; Xia, Y.; Xing, J.; Li, Z.; Qian, Q.; Wang, Y.; Wu, A.; Zeng, L.; Zhou, Y. ACS Biomater. Sci. Eng. 2017, 3, 608-618.
    Wi, J.; Park, J.; Kang, H.; Jung, D.; Lee, S.; Lee, T. G. ACS Nano 2017, 11, 6225-6232
    Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824-830
    Willets, K. A.; Duyne, R. P. V. Annu. Rev. Phys. Chem. 2007, 58, 267-297
    Li, Q.; Zhuo, X.; Li, S.; Ruan, Q.; Xu, Q.; Wang J. Advanced Optical Materials 2015, 3, 801-812
    Lee, S.; Mayer, K. M.; Hafner, J. H. Analytical Chemistry 2009, 81, 4450-4455
    Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. B 2005, 109, 22192-22200
    Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648-8649
    1Lee, J.; Gibson, K. J.; Chen, G.; Weizmann, Y. Nat. Commun. 2015, 6, 7571-7579
    1Liu, W.; Liu, D.; Zhu, Z.; Han, B.; Gao, Y.; Tang, Z. Nanoscale 2014, 6, 4498-4502
    1Guo, Z.; Wan, Y.; Wang, M.; Xu, L.; Lu, X.; Yang, G.; Fang, K.; Gu, N. Colloids and Surfaces A: Physicochem. Eng. Aspects 2012, 414, 492-497
    Zhuo, X.; Zhu, X.; Li, Q.; Yang, Z.; Wang, J. ACS Nano 2015, 9, 7523-7535
    Park, K.; Koerner, H.; Vaia, R. A. Nano Lett. 2010, 10, 1433-1439
    Ni, W.; Kou, X.; Yang, Z.; Wang, J. ACS Nano 2008, 2, 677-686
    Song, J. H.; Kim, F.; Kim, D.; Yang, P. Chem. Eur. J. 2005, 11, 910-916
    Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B. Nano Lett. 2013, 13, 765-771
    Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. Journal of Controlled Release 2006, 114, 343-347
    Kou, X.; Ni, W.; Tsung, C.; Chan, K.; Lin, H.; Stucky, G. D.; Wang, J. Small 2007, 3, 2103-2113
    Hao, E.; Schatz, G. C. J. Chem. Phys. 2004, 120, 357-366
    Chen, H.; Shao, L.; Woo, K. C.; Ming, T.; Lin, H.; Wang, J. J. Phys. Chem. C 2009, 113, 17691-17697
    Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Langmuir 2008, 24, 5233-5237
    Lee, S.; Mayer, K. M.; Hafner, J. H. Anal. Chem. 2009, 81, 4450–4455
    Rao, W.; Li, Q.; Wang, Y.; Li, T.; Wu, L. ACS Nano 2015, 9, 2783-2791
    Liu, J.; Kan, C.; Shi, D.; Ke, S.; Liu, Y. Superlattices and Microstructures 2017, 110, 191-197
    Niu, C.; Song, Q.; He, G.; Na, N.; Ouyang, J. Anal. Chem. 2016, 88, 11062-11069
    Zhu, X.; Fang, C.; Jia, H.; Huang, Y.; Cheng, C. H. K.; Ko, C.; Chen, Z.; Wang, J.; Wang, Y. J. Nanoscale 2014, 6, 11462-11472
    Jia, H.; Fang, C.; Zhu, X.; Ruan, Q.; Wang, Y. J.; Wang, J. Langmuir 2015, 31, 7418-7426
    Zhu, X.; Jia, H.; Zhu, X.; Cheng, S.; Zhuo, X.; Qin, F.; Yang, Z.; Wang, J. Adv. Funct. Mater. 2017, 27, 1700016
    Chen, S.; Wang, Y.; Liu, Q.; Shi, G.; Liu, Z.; Lu, K.; Han, L.; Ling, X.; Zhang, H.; Cheng, S.; Ma, W. Adv. Energy Mater. 2017, 8, 1701194
    Wang, F.; Cheng, S.; Bao, Z.; Wang, J. Angew. Chem. Int. Ed. 2013, 52, 10344-10348
    Chapman, B. S.; Wu, W.; Li, Q.; Holten-Andersen, N.; Tracy, J. B. Chem. Mater. 2017, 29, 10362-10368
    Pastoriza-Santos, I.; Pe´rez-Juste, J.; Liz-Marza´n, L. M. Chem. Mater. 2006, 18, 2465-2467
    Smith, D. K.; Korgel, B. A. Langmuir 2008, 24, 644-649
    Smith, D. K.; Miller, N. R.; Korgel, B. A. Langmuir 2009, 25, 9518–9524
    Rayavarapu, R. G.; Ungureanu, C.; Krystek, P.; Ton. G. van Leeuwen; Manohar, S. Langmuir 2010, 26, 5050–5055

    下載圖示
    QR CODE