簡易檢索 / 詳目顯示

研究生: 林昱志
論文名稱: 數位全像顯微術及斷層造影之研究
Studies on digital holographic microscopy and tomography
指導教授: 鄭超仁
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 88
中文關鍵詞: 數位全像顯微術斷層術相位影像折射率分布三維造影
英文關鍵詞: digital holography, microscopy, tomography, phase imaging, refractive index distribution, three-dimensional imaging
論文種類: 學術論文
相關次數: 點閱:593下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位全像基於全像干涉之原理,可從所記錄之數位全像片中量化分析光波中之數位振幅資訊,並已被廣泛應用於測量經過樣品之光波資訊。而在本論文中,我們提出數種技術應用於數位全像顯微術中,並用以測量諸如折射率等之樣品的光學資訊。首先,我們提出應用數位全像顯微術來進行全像記錄之即時現場量測,借以獲得在全像記錄材料於記錄過程中,光致折射率條紋之動態變化,此為第一次同時記錄全像片並同步觀測其折射率變化之研究,相較於直接以光學讀取全像片內容,本研究所提供的數位全像顯微造影之方法可更直觀且微觀全像片記錄過程之記錄機制。接著為了可直接取得穿透或半穿透材料之折射率變化,而不受限於所取得相位所代表的累計光程差,我們率先提出了一嶄新的穿反式數位全像顯微術之架構,此方法可用以同時取得微光學元件之穿透與反射的光場,並分別藉由其重建出的相位資訊以分析其中所包含的折射率變化,相對於傳統之折射率測量之技術,本研究可避免複雜的掃描機制,而可達非接觸與快速測量樣品之整面的空間折射率變化。然而,上述所提出的技術依然無法完全解決相位中所包含的累計光程差的限制,因此所取得的結果無法描述實際物體的內部三維分布資訊。因此,本論文也提出兩種不同之斷層影像的技術。首先是低同調數位全像顯微術,透過低同調光源的同調選波之原理,可用以測量物體內部不同深度的整面之切片影像,此方法首先達到以低同調光源下之相移式數位全像顯微術,來進行活體生物樣品之切片斷層掃描之研究。然而因部份樣品其較低的反射光強度,因此低同調的顯微架構難以應用於穿透式樣品,為取得穿透式樣品內部的完整折射率資訊,我們提出了一新穎的同軸旋轉式數位全像顯微斷層系統,此技術率先參考於傳統的電腦斷層之掃描方式,將其融入數位全像顯微斷層之技術中,其入射光源與量測系統將以樣品為圓心進行旋轉。而透過此種光學繞射斷層掃瞄的技術,我們可以數位全像顯微術取得不同角度之穿透光場,並以傅氏繞射理論計算與分析樣品內部的三維折射率分布。也正因此,本研究所提出的同軸旋轉之架構,可領先於其他斷層技術,進行樣品於液體環境下之顯微斷層的量測,而不會影響樣品之穩定性,且其重建之模型依然可使用對稱性較好的樣品旋轉之模式進行斷層影像之重建。最後,本研究亦首先提出一環場光束旋轉之數位全像顯微斷層之設計概念,此法可做為未來改善同軸旋轉系統架構下,複雜且耗時之旋轉系統的機制。以上研究相關的實驗與結果,將於接下來的本文當中詳細的描述與探討。

    Digital holography has been widely investigated and has great potential for applications such as measuring whole wavefronts of a sample because it can quantitatively assess all information in a complex wavefront derived from a digital hologram. And in this study we proposed the several digital holographic microscope techniques to measure the optics properties, such as refractive index for the samples. Firstly, we present a technique for in situ measurement of light-induced refractive index gratings in epoxy resin using digital holographic microscopy. Grating formation and dynamic behavior of the recording medium during the light-induced holographic process was first time to be demonstrated experimentally and characterized using the proposed scheme. Compared with an optical holographic readout, the proposed technique facilitates direct observation and substantial understanding of the holographic recording mechanism in a microscopic view. Then, in order to directly measure the spatial distribution of the refractive index of transparent or semi-transparent micro-optical elements, we propose the transflective digital holographic microscope system, which can simultaneously record both the transmitted and the reflected waves from micro-optical element and then numerically reconstructs the phase information and refractive index profile. Unlike the conventional scanning refractive ray method, the proposed method supports the rapid full-field nondestructive measurement and direct observation of the spatial index variation and structure of micro-optical elements. However above method can only measure the integral phase information through the sample but not obtain the distribution inside the sample. So this study also proposed a low coherence digital holographic microscope which demonstrates an en face sectional imaging at the different depth inside the sample. This is the first time where a low coherence phase-shifting holographic microscope has been applied to the sectional imaging of a biological specimen under an in vivo environment. Finally, in order to obtain more complete information inside the transparent sample, we proposed a novel optical section imaging technique to measure the spatially refractive index (RI) distribution inside the sample by digital holographic microtomography system. In this tomographic study we use coaxial rotation architecture, whose illuminated laser source and image sensor are lined up and simultaneously rotated around the sample. This architecture was the first one to measure the sample immersed in the liquid medium based on the sample rotation formula, which would not disturb the sample when rotate the whole imaging system during the tomographic recording process. As the computerized tomography, the 3D refractive index distribution inside the sample can be calculated with different transmitted wavefronts according to the Fourier diffraction theorem. Also we proposed an omnidirectional synthetic aperture digital holographic microtomography system to induce the complex rotation mechanism in the coaxial rotation architecture. The experiments and results of the above study works are presented and discussed.

    Outline 中文摘要........................................................................................................................I Absdtract.....................................................................................................................III Chapter 1. Introduction of digital holographic microscopy and tomography 1 1.1 Development Status of digital holographic microscopy (DHM) 1 1.2 Development Status of digital holographic microtomography (DHμT) 6 1.3 Background and motivation 9 Chapter 2. Measurement for holographic recording medium by DHM 10 2.1 The Primciple of recording and reconstruction process 12 2.1.1 recording process 12 2.1.2 reconstruction process 14 2.2 Refractive index measurement for holographic recording medium 17 2.2.1 Working principle 17 2.2.2 Experimental setup 19 2.3 Results and discussions 21 2.3.1 Experiments results 21 2.3.2 Discussions 26 Chapter 3. Reflective index measurement by transreflective DHM 27 3.1 Working principle of transreflective DHM 28 3.1.1 The analysis of phase information 28 3.1.2 Measurement of reflective index 29 3.2 Experimental setup of transflective DHM 32 3.3 Results and discussions 34 3.3.1 Experiments results 34 3.3.2 Discussions 35 Chapter 4. Sectional imaging by low coherence DHM 37 4.1 Principle and analysis for low coherence DHM 39 4.1.1 Interference under low coherence light source 39 4.1.2 The effect on phase-shifting digital holography 40 4.1.3 Simulations and analysis 43 4.2 Experimental setup 44 4.3 Results and discussions 45 4.3.1 Experiments results 45 4.3.2 Discussions 47 Chapter 5. Principle and analysis of DHμT 48 5.1 The analysis of the transmitted wavefront 49 5.1.1 Transmitted wavefront with weak scattering 49 5.1.2 Slice integral method for wavefronts propagation 50 5.1.3 Limitation of the slice integral method 51 5.2 Tomographic imaging method 53 5.2.1 Recording by digital holographic microscopy 53 5.2.2 Fourier diffraction theorem 54 5.3 The discussion of tomographic imaging architecture 56 5.3.1 Sample rotation method 56 5.3.2 Synthetic aperture method 57 5.4 Simulations and discussions 58 Chapter 6. Coaixal rotation DHμT 61 6.1 Experimental setup of DHμT 63 6.2 Experiments results 65 6.3 Discussion of rotation reduced method 67 6.3.1 Working principle 67 6.3.2 Simulation and analysis 69 6.4 Conclusions 71 Chapter 7. Conclusions and Future works 73 Reference 75

    [1] D. Gabor, “Holographic Model of Temporal Recall,” Nature London 217, 584 (1968).
    [2] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22 1268–1270 (1997).
    [3] I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975-983 (2006).
    [4] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
    [5] U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol., 13, R85–R101 (2002).
    [6] U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).
    [7] T.-C. Poon, “Optical Scanning Holography - A Review of Recent Progress,” J. Opt. Soc. Korea 13, 406-415 (2009).
    [8] C. J. Mann and M. K. Kim, “Quantitative phase-contrast microscopy by angular spectrum digital holography,” Proc. SPIE 6090, 60900B-1-60900B-8 (2006).
    [9] M. K. Kim, Digital Holography and Microscopy: Principles, Techniques, and Applications (Springer Verlag, 2011).
    [10] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [11] I. Yamaguchi, J. Kato, S. Ohta and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
    [12] S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640-13648 (2007).
    [13] G. S. Jorge, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
    [14] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [15] A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-Time Digital Holographic Microscopy for Phase Contrast 3D Imaging of Dynamic Phenomena,” IEEE J. Disp. Technol. 6, 500–505(2010).
    [16] J. H. Bruning, D. R. Herriott, J. D. Gallaghar, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [17] G. Lai, T. Yatagai, “Generalized phase-shifting interferometry,” J. Opt. Soc. Am. A 8, 822–827 (1991).
    [18] L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
    [19] G. Liu and P. D. Scott, "Phase retrieval and twin-image elemination for in-line Fresnel holograms," J. Opt. Soc. Am. A 4, 159-165 (1987).
    [20] L. Onural and M. T. Oezgen, "Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis," J. Opt. Soc. Am. A 9, 252-260 (1992).
    [21] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).
    [22] O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
    [23] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2, 2721–2730 (2011).
    [24] G. W. Stroke, "Lensless Fourier-transform method for optical holography," Appl. Phys. Lett. 6, 201-203 (1965).
    [25] C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, "Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology," Appl. Opt. 38, 4812-4820 (1999).
    [26] C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
    [27] L. Repetto, E. Piano, and C. Pontiggia, "Lensless digital holographic microscope with light-emitting diode illumination," Opt. Lett. 29, 1132-1134 (2004).
    [28] F. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006).
    [29] C. Cheng, Y. Lin, M. Hsieh, and H. Tu, “Complex modulation characterization of liquid crystal spatial light modulators by digital holographic microscopy,” Jpn. J. Appl. Phys. 47, 3527–3529 (2008).
    [30] E. Cuche, P. Marquet, Ch. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [31] S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Lasers Eng. 37, 331–340 (2002).
    [32] M. Liebling, Th. Blu, M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004).
    [33] M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opti. Soc. Am. 72, 156–160 (1982).
    [34] N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [35] J. S. Walker, Fast Fourier Transforms (CRC Press, Boston, Mass., 1991).
    [36] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
    [37] G. Pedrini and H. J. Tiziani “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
    [38] M. K. Kim, L. Yu, and C. J. Mann, "Interference techniques in digital holography," J. Opt. A , Pure Appl. Opt. 8, S518-S523 (2006).
    [39] C. Mann, L. Yu, L. Chun-Min, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
    [40] S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, "Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes," Opt. Express 13, 9935-9940 (2005).
    [41] M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19, 9192–9200 (2011).
    [42] P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cell with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
    [43] B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cell with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005).
    [44] D. Carl, B. Kemper, G. Wernicke, and G. Von Bally, "Parameter-optimized digital holographic microscope for high-resolution living-cell analysis," Appl. Opt. 43, 6536-6544 (2004).
    [45] F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
    [46] T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
    [47] F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, "Characterization of microlenses by digital holographic microscopy," Appl. Opt. 45, 829-835 (2006).
    [48] P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005).
    [49] T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840–1842 (2010).
    [50] T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
    [51] F. Montfort, Y. Emery, E. Solanas, E. Cuche, N. Aspert, P. Marquet, C. Joris, J. Kühn, and C. Depeursinge, “Surface roughness parameters measurements by Digital Holographic Microscopy (DHM),” in Third International Symposium on Precision Mechanical Measurements (SPIE, 2006), Vol. 6280 I, pp. 62800V-1–62800V-6.
    [52] T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27-37 (2002).
    [53] T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
    [54] N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
    [55] Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
    [56] C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media via digital holography,” Nat. Photon. 3, 211–215 (2009).
    [57] E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35, 4102–4104 (2010).
    [58] C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143 (2002).
    [59] M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008).
    [60] V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828(2006).
    [61] V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
    [62] W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [63] M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
    [64] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
    [65] . M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 07010 (2008).
    [66] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [67] G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214 (2000).
    [68] M. L. Lluís, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977-3984 (2005).
    [69] S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45, 953-959 (2006).
    [70] P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812 (2005).
    [71] F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209-8217 (2006).
    [72] Y. C. Lin, C. J. Cheng, and T. -C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50, B25-B30 (2011).
    [73] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York 1988).
    [74] J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, "Optical projection tomography as a tool for 3D microscopy and gene expression studies," Science 296, 541-545 (2002).
    [75] M. Fauver, E. Seibel, J. R. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, "Three-dimensional imaging of single isolated cell nuclei using optical projection tomography," Opt. Express 13, 4210-4223 (2005).
    [76] B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index difference in the profiles of optical fibers and fiber devices,” Appl. Opt. 44, 316–327 (2005).
    [77] W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, "Tomographic phase microscopy," Nature Methods 4, 717-719 (2007).
    [78] E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969).
    [79] V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165-176 (2002).
    [80] F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006).
    [81] F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006).
    [82] W. Gorski and W. Osten, "Tomographic imaging of photonic crystal fibers," Opt. Lett. 32, 1977-1979 (2007).
    [83] T. Kozacki, R. Krajewski, and M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17, 13758-13767 (2009).
    [84] Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266-277 (2009).
    [85] M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberle, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34, 79-81 (2009).
    [86] S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable lensfree tomographic microscope,” Lab Chip 11, 2222–2230 (2011).
    [87] P. Gunter and J. P. Huignard, eds., Photorefractive Materials and Their Applications I and II (Springer-Verlag, Berlin, 1988).
    [88] H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
    [89] L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [90] K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003).
    [91] I. Bányász, “Direct measurement of the refractive index profile of phase gratings, recorded in silver halide holographic materials by phase-contrast microscopy,” Appl. Phys. Lett. 83, 4282–4284 (2003).
    [92] K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial frequency refractive index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
    [93] Y. Youk and D. Y. Kim, “Tightly focused epimicroscope technique for submicrometer-resolved highly sensitive refractive index measurement of an optical waveguide,” Appl. Opt. 46, 2949–2953 (2007).
    [94] Y. S. Ghim and S. W. Kim, "Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry," Opt. Express 14, 11885-11891 (2006).
    [95] M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88, 111-114 (2006).
    [96] Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys 49, 102501-102501-7 (2010).
    [97] Y. C. Lin and C. J. Cheng, “Determining refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402-115402-5 (2010).
    [98] T. Wilson, “Confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990).
    [99] J. W. Goodman, Statistical Optics (Wiley, 1985).
    [100] S. S. Kou and C. J. R. Sheppard, "Image formation in holographic tomography," Opt. Lett. 33, 2362-2364 (2008).
    [101] S. S. Kou and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture imaging conditions,” Appl. Opt. 48, H168–H175(2009).
    [102] A. J. Devaney, “Inversion formula for inverse scattering within the Born approximation,” Opt. Lett. 7, 111–112 (1982).
    [103] B. Stout, M. Neviere, and E. Popov, "Light diffraction by three-dimensional object: differential theory," J. Opt. Soc. Am. A 22, 2385 - 2404 (2005).
    [104] Y. C. Lin, C. J. Cheng, T. C. Poon, “A slice-integral method for calculating wave propagation through volumetric objects, and its application in digital holographic tomography,” J. Opt. 16, 065402 (2014).
    [105] S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Centr. Eur. J. Phys. 7, 22-31 (2009).
    [106] A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
    [107] E. E. Kriezis and S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).
    [108] T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imaging 21, 181–184 (2002).
    [109] Y. C. Lin and C. J. Cheng, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
    [110] F. Charriere, B. Rappaz, J. Kuhn, T. Colomb, P. Marquetand, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818-8831 (2007).
    [111] J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
    [112] Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).

    無法下載圖示 本全文未授權公開
    QR CODE