簡易檢索 / 詳目顯示

研究生: 胡昱璿
Hu, Yu-Hsuan
論文名稱: 運用專利資料探討電動車關鍵領域之發展趨勢
Exploring the Development Trends of Key Areas in Electric Vehicles Using Patent Data
指導教授: 蘇友珊
Su, Yu-Shan
口試委員: 吳豐祥
Wu, Feng-Shang
耿筠
Ken, Yun
蘇友珊
Su, Yu-Shan
口試日期: 2023/06/30
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 172
中文關鍵詞: 電動車專利電池充電技術生命週期
英文關鍵詞: Electric Vehicle, Patent, Battery, Charging, Technology Life Cycle
DOI URL: http://doi.org/10.6345/NTNU202301798
論文種類: 學術論文
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國際能源署 (International Energy Agency,簡稱IEA) 長期關注全球電動車之發展,並且非常肯定充滿活力的電動車市場,再者因潔淨能源環保觀念的抬頭、政策的激勵、技術的改進、基礎設施的建設等各方面的配合,導致消費者在購車時,更加偏愛電動車,是以目前電動車市場正進入大幅度成長的階段。本研究以M-TRENDS專利檢索及資料分析管理平台做為檢索及資料處理之工具,透過文獻閱讀及專利資料分析篩選關鍵字,並以檢索電動車關鍵領域技術之核准公告專利數量做為衡量的指標,包括歷年專利件數分析、國際專利分類號分析、國家別分析及公司別分析等 4 個部分,最後透過羅吉斯成長模型 (Logistic Growth Model) 來預測其技術生命週期。研究結果顯示電動車關鍵領域與重要副技術之電池技術 (Battery technology) 、充電技術 (Charging technology) 以及子技術之電池連接單元(Battery connection unit) 、電池管理系統 (Battery Management System) 、電池框架結構 (Battery frame structure) 、電池熱管理系統 (Battery thermal management system) 、交流充電 (AC charging) 、直流充電 (DC charging) 、充電樁 (Charging station) 等技術,目前正處於技術生命週期成熟期初期。本研究發現電動車領域關鍵技術呈現均衡發展、關鍵技術領域相當聚焦、專利佈局以亞洲國家表現優越及推測關鍵領域技術前景佳,提供電動車產業的專利現況及未來規劃的參考方向。

    The International Energy Agency (IEA) has been paying attention to the development of global electric vehicles for a long time, and is very sure of the vibrant electric vehicle market. Moreover, due to the rising concept of clean energy and environmental protection, policy incentives, technological improvements, and infrastructure improvements, the cooperation of construction and other aspects has led consumers to prefer electric vehicles when buying cars. Therefore, the current electric vehicle market is entering a stage of substantial growth. This study uses the M-TRENDS patent retrieval and data analysis management platform as a retrieval and data processing tool, through literature reading and patent data analysis to filter keywords, and to retrieve the number of patents approved and announced in key areas of electric vehicle technology as a measure. Indicators include the analysis of the number of patents over the years, the analysis of the International Patent Classification Number, the country analysis and the company analysis. Finally, the Logistic Growth Model is used to predict the technology life cycle. The research results show that the key areasof electric vehicles and important secondary technologies are battery technology, charging technology, and sub-technologies such as battery connection unit, battery management system, battery frame structure, battery thermal management system, AC charging, DC charging, charging station and other technologies are currently in the early stage of the mature stage of the technology life cycle. This study found that the key technologies in the field of electric vehicles are developing in a balanced manner, the key technology areas are quite focused, the patent layout is dominated by Asian countries, and it is speculated that the technology prospects in key areas are good, providing a reference for the current patent status and future planning of the electric vehicle industry.

    謝辭 i 摘要 ii Abstract iii 目次 iv 表次 vi 圖次 viii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第二章 文獻探討 5 第一節 電動車產業之發展 6 第二節 關鍵技術領域—電池與充電 7 第三節 電池與充電關鍵技術領域之構面發展 10 第三章 研究方法 19 第一節 研究流程 19 第二節 專利檢索 21 第三節 專利分析 25 第四節 技術生命週期 26 第四章 研究結果 31 第一節 歷年專利件數分析 31 第二節 國際專利分類號分析 65 第三節 國家別分析 95 第四節 公司別分析 115 第五節 技術生命週期分析 136 第五章 研究討論 153 第一節 主要研究發現 153 第二節 研究貢獻 158 第三節 研究限制 161 第四節 未來研究方向 161 第五節 結論 162 參考文獻 165

    中央社(2023年8月10日)。BYD生產出第500萬輛新能源汽車。中央社訊息平台。取自https://www.cna.com.tw/postwrite/chi/348227

    台灣博世(2022年9月19日)。2022年IAA國際商用車展:博世持續賦予氣候中和的車輛動力系統成長動能。BOSCH。取自https://www.bosch.com.tw/news-and-stories

    台灣博世(2022年9月7日)。博世宣佈告別「充電盒」。BOSCH。取自https://www.bosch.com.tw/news-and-stories

    吳耿賢(2022)。全球電動車產業現況與發展趨勢。ARTC車輛研測專刊,18-25。

    吳碧娥(2022年11月23日)。碳化矽應用成長快速,2027年產值挺進60億美元。北美智權報,321。取自http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_221123_0702.htm

    李芳齡(譯)(2021)。21世紀汽車革命:電動車全面啟動,自駕車改變世界(原作者:M. Herger)。台北市:星出版:遠足文化。(原著出版年:2020)

    科技產業技術室(2021年11月3日)。豐田對行駛中「車對車無線能量傳輸」申請專利。國家實驗研究院。取自https://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=18434

    科技產業資訊室(2022年7月12日)。豐田和松下固態電池專利領先群雄。國家實驗研究院。取自https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=19356

    科睿唯安(2021年7月12日)。科睿唯安最新報告顯示電池容量和充電技術是加速電動車普及的關鍵。Clarivate。取自https://clarivate.com/zh-hant/news/news-releases-2021-0712/

    專利法(2022年5月4日)。

    郭妍希(2023年7月31日)。火燒車可解?三星SDI、新創商QS全固態電池有譜。Moneydj理財網。取自https://tw.stock.yahoo.com/news/

    郭家佑、蘇彥安、王龍(2021)。從電動車的趨勢及其專利申請動態探討專利申請策略與佈局。理律新知,(5),18-22。

    郭靜芝(2022年4月21日)。充馭科技攜手台灣西門子布局電動車充電樁市場。工商時報。取自https://ctee.com.tw/industrynews/technology/631071.html

    經濟部智慧財產局(2021年1月)。IPC國際專利分類查詢。取自https://topic.tipo.gov.tw/patents-tw/sp-ipcq-full-101.html

    經濟部智慧財產局(2022)。經濟部智慧財產局產業專利分析與布局競賽報告書。取自https://pcm.tipo.gov.tw/PCM2010/PCM/resources/patentanalysis/2022work_01.pdf

    經濟部標準檢驗局(2011)。電動車輛傳導式充電系統-第2部:介面要求。取自https://www.bsmi.gov.tw/wSite/public/Data/f1304492266965.pdf

    福岡幸太郎(2022年11月08日)。EV專利:比亞迪獨領中國,躋身世界。日本經濟新聞。取自https://zh.cn.nikkei.com/china/ccompany/50422-2022-11-08-05-00-25.html?start=2

    賴宏昌(2021)。博世、福特異口同聲:車廠目前最擔心EV電池供應。MoneyDJ理財網。取自https://www.moneydj.com/kmdj/news/newsviewer.aspx?a=ccaad310-9121-4883-8bc7-44346c359fc1

    羅濟威(2018)。我國與主要競爭國家專利優勢領域分析,科技政策觀點。取自https://portal.stpi.narl.org.tw/index/article/10445

    蘇銘翰(2022年1月23日)。平均每天誕生 7.5 項專利!Toyota 蟬聯獲得專利最多車廠。自由時報。取自https://auto.ltn.com.tw/news/19458/3

    Chen Kobe(2022年11月23日)。LG投資30億美元,建設美國本土最大電池廠。財經新報。取自https://finance.technews.tw/2022/11/23/lgchem-3b-usd-battery-factory/

    MoneyDJ(2020年05月07日)。樂金化學超車松下,躍居全球最大 EV 電池供應商。科技新報。取自https://technews.tw/2020/05/07/lg-chem-ev-battery-supplier/

    Anderson P, Tushman ML (1990) Technological discontinuities and dominant designs: a cyclical model of technological change. Administrative Science Quarterly, 35(4), 604–633. Retrieved from https://www.researchgate.net/publication/243768027_Technological_Discontinuities_and_Dominant_Designs_A_Cyclical_Model_of_Technological_Change

    Bharathidasan, M., Indragandhi, V., Suresh, V., Jasiński, M. & Leonowicz, Z. (2022). A review on electric vehicle: Technologies, energy trading, and cyber security. Energy Reports, 8, 9662-9685. Retrieved from https://doi.org/10.1016/j.egyr.2022.07.145

    Feng, S. & L. Mageea, C. (2020). Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Applied Energy, 260. Retrieved from https://doi.org/10.1016/j.apenergy.2019.114264

    Huang, Y., Li, R., Zou, F., Jiang, L., Porterf, A. L. & Zhang, L. (2022). Technology life cycle analysis: From the dynamic perspective of patent citation networks. Technological Forecasting & Social Change, 181. Retrieved from https://doi.org/10.1016/j.techfore.2022.121760

    Huang, Y., Zhu, F., Porter, A.L., Zhang, Y., Zhu, D. & Guo, Y. (2021). Exploring technology evolution pathways to facilitate technology management: from a technology life cycle perspective. IEEE Transactions on Engineering Management, 68(5), 1347–1359. Retrieved from https://doi.org/10.1109/tem.2020.2966171.

    IEA (2017). Global EV Outlook 2017. Retrieved from https://www.iea.org/reports/global-ev-outlook-2017

    IEA (2018). Global EV Outlook 2018. Retrieved from https://iea.blob.core.windows.net/assets/387e4191-acab-4665-9742-073499e3fa9d/Global_EV_Outlook_2018.pdf

    IEA (2019). Global EV Outlook 2019. Retrieved from https://iea.blob.core.windows.net/assets/7d7e049e-ce64-4c3f-8f23-6e2f529f31a8/Global_EV_Outlook_2019.pdf

    IEA (2020). Global EV Outlook 2020. Retrieved from https://iea.blob.core.windows.net/assets/af46e012-18c2-44d6-becd-bad21fa844fd/Global_EV_Outlook_2020.pdf

    IEA (2021). Global EV Outlook 2021. Retrieved from https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf

    IEA (2022). Global EV Outlook 2022. Retrieved from https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf

    Kalthaus, M. (2020). Knowledge recombination along the technology life cycle. Journal of Evolutionary Economics, 30(3), 643-704. Retrieved from https://doi.org/10.1007/s00191-020-00661-z.

    Kumara, R., Tripathib, R. C. & Singhc, V. (2016). Keyword based search and its limitations in the Patent document to secure the idea from its infringement. Procedia Computer Science, 78, 439-446.

    Lee, M. (2020). An analysis of the effects of artificial intelligence on electric vehicle technology innovation using patent data. World Patent Information, 63. Retrieved from https://doi.org/10.1016/j.wpi.2020.102002

    Ma, S. C., Fan, Y., Guo, J. F., Xu, J. H., & Zhu, J. (2019). Analysing online behaviour to determine Chinese consumers’ preferences for electric vehicles. Journal of Cleaner Production, 229, 244-255.

    Ma, S. C., Xu, J. H., & Fan, Y. (2022). Characteristics and key trends of global electric vehicle technology development: A multi-method patent analysis. Journal of Cleaner Production, 338. Retrieved from https://doi.org/10.1016/j.jclepro.2022.130502

    MARKETS AND MARKETS (2022a). EV Battery Market by Battery Capacity (<50, 50-110, 111-200, 201-300 and >300), Method (Wire, Laser), Propulsion (BEV, PHEV, HEV, FCEV), Battery Type, Material Type, Li-ion Battery Component, Battery Form, Vehicle Type & Region - Global Forecast to 2027. Retrieved from https://www.marketsandmarkets.com/Market-Reports/electric-vehicle-battery-market-100188347.html

    MARKETS AND MARKETS (2022b). EV Charging Station Market by Application, Level of Charging, Charging Point, Charging Infrastructure, Operation, Electric Bus Charging, DC Fast Charging, Connectivity, Connection Phase, Service, Installation and Region - Global Forecast to 2027.Retrieved from https://www.marketsandmarkets.com/Market-Reports/electric-vehicle-supply-equipment-market-89574213.html

    Naumanen, M., Uusitalo, T., Huttunen-Saarivirta, E. & van der Have, R. (2019). Development strategies for heavy duty electric battery vehicles: Comparison between China, EU, Japan and USA. Resources, Conservation & Recycling, 151. Retrieved from https://doi.org/10.1016/j.resconrec.2019.104413

    Nurdiawati, A. & Agrawal, T. K. (2022). Creating a circular EV battery value chain:End-of-life strategies and future perspective. Resources, Conservation & Recycling, 185. Retrieved from https://doi.org/10.1016/j.resconrec.2022.106484

    Park, J. & Heo, E. (2013). Patent quality determinants based on technology life cycle with special reference to solar-cell technology field. Maejo International Journal of Science and Technology, 7(2), 315-328.

    Pilkington, A., Dyerson, R. & Tissier, O. (2002). The electric vehicle: Patent data as indicators of technological development. World Patent Information, 24, 5–12.

    Piroi F, Lupu M, Hanbury A, Zenz V (2011) CLEF-IP 2011: retrieval in the intellectual property domain. Retrieved from https://www.researchgate.net/publication/221159804_CLEF-IP_2011_Retrieval_in_the_intellectual_property_domain

    Placek, M. (2021). Share of the Global Lithium-Ion Battery Manufacturing Capacity in 2020 with a Forecast for 2025, by country. Retrieved from https://www.statista.com/statistics/1249871/share-ofthe-global-lithium-ion-battery-manufacturingcapacity-by-country/.

    Rajashekara, K. (2013). Present Status and Future Trends in Electric Vehicle Propulsion Technologies. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(1), 3-10.

    Shalaby, W. & Zadrozny, W. (2019). Patent retrieval: a literature review. Knowledge & Information Systems, 61(2), 631-660. DOI: 10.1007/s10115-018-1322-7.

    Sharma, G., Sood, V. K., Alam, M. S. & Shariff, S. M. (2020). Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality. eTransportation, 5. Retrieved from https://doi.org/10.1016/j.etran.2020.100066

    Taiebat, M. & Xu, M. (2019). Synergies of four emerging technologies for accelerated adoption of electric vehicles: Shared mobility, wireless charging, vehicle-to-grid, and vehicle automation. Journal of Cleaner Production, 230, 794-797.

    Torkey, A. & Abdelgawad H. (2022). Framework for planning of EV charging infrastructure: Where should cities start? Transport Policy, 128, 193-208. Retrieved from https://doi.org/10.1016/j.tranpol.2022.09.015

    UN Climate Change & UK Government (2021). COP26 The Glasgow Climate Pact. Retrieved from https://ukcop26.org/wp-content/uploads/2021/11/COP26-Presidency-Outcomes-The-Climate-Pact.pdf

    Winston, C. (2013). On the performance of the U.S. Transportation system: caution ahead. Journal of Economic Literature, 51(3), 773-824. Retrieved from http://dx.doi.org/10.1257/jel.51.3.773

    WIPO (2022). Guide to the international patent classification. Retrieved from https://www.wipo.int/publications/en/details.jsp?id=4593&plang=EN

    Zhao, G., Wang, X. & Negnevitsky, M. (2022). Connecting battery technologies for electric vehicles from battery materials to management. iScience, 25(2), February 18. Retrieved from https://doi.org/10.1016/j.isci.2022.103744

    無法下載圖示 本全文未授權公開
    QR CODE