研究生: |
鄭名志 Cheng, Ming-Chih |
---|---|
論文名稱: |
利用掃描穿隧顯微鏡量測鈣鈦礦太陽能電池晶粒的光致電子特性 Imaging the Photo-Induced Electronic Properties of Grain Size Evolution in Perovskite-based Solar Cell by Scanning Tunneling Microscopy |
指導教授: |
邱雅萍
Chiu, Ya-Ping |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、掃描穿隧顯微鏡 、掃描穿隧能譜 、硫化鉛 |
英文關鍵詞: | Perovskite solar cell, scanning tunneling microscopy(STM), scanning tunneling spectrum(STS), PbS |
DOI URL: | https://doi.org/10.6345/NTNU202204361 |
論文種類: | 學術論文 |
相關次數: | 點閱:221 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池(Perovskite solar cell, PSC)除了其製程的快速、便利性外,其備受矚目的便是極高的光電轉換效率。有研究發現鈣鈦礦反應層可藉由摻雜量子晶體來影響光電轉換效率。目前已有團隊利用摻雜量子晶體硫化鉛改良鈣鈦礦太陽能電池的效率。研究成果發現,藉由添加硫化鉛有助於增加晶粒的形貌大小,此外還有效地提升太陽能電池的光電轉換效率。
本研究利用掃描穿隧顯微鏡進行量測太陽能電池的主動反應層甲胺鉛氯碘鹽(CH_3 NH_3 PbI_(3-x) 〖Cl〗_x)添加量子晶體後的電子特性的變化。同時比較摻雜硫化鉛及未摻雜硫化鉛後反應層的變化,並針對加光前後的能態密度在正負偏壓增減的情形進行能帶討論。實驗結果顯示摻雜硫化鉛的鈣鈦礦反應層薄膜晶粒直徑變大,且其在加光過後的費米能階遠離導電帶的能量變化量值較未摻雜硫化鉛的樣品晶粒較大,顯示光致載子在鈣鈦礦反應層薄膜分離效率更好,進而導致其光電轉換效率提升。
The recent studies show that intermixing quantum crystal PbS with the active light-absorber (〖CH〗_3 〖NH〗_3 〖PbI〗_(3-x) 〖Cl〗_x) film in perovskite solar cell enlarges the grain size, which can be exceeded to 4µm. The quantum crystal in perovskite increases not only power conversion efficiency over 17.4%, but also the diffusion length.
In order to investigate the variation of the electronic properties of the perovskite solar cell film in dark and under illumination condition, scanning tunneling microscopy (STM) was utilized to study the topography images and localized electronic properties of the perovskite active light-absorber.
In this work, the electronic dI/dV spectroscopy measurement of perovskite intermixing PbS in dark demonstrates n-type semiconductor behavior. Moreover, the increase of density of states at valence band of perovskite film reveals the augment of hole carrier concentration under illumination. The shift of electronic dI/dV spectroscopy of perovskite with PbS compared to that of the perovskite without PbS shows that the magnitude of carriers separation is associated with the grain size. Also the grain size enlarged is beneficial for power conversion efficiency (PCE).
[1]S. A. L. W. VictorW. Bergmann1, F. Javier Ramos2, Mohammad Khaja Nazeeruddin3, Michael Gra and A. L. D. Dan Li1, Ingo Lieberwirth1, Shahzada Ahmad2
[2]S. M. Sze and K. K. Ng, Physics of semiconductor devices. (John wiley & sons, 2006).
[3]S. M. Sze, Semiconductor devices: physics and technology. (John Wiley & Sons, 2008).
[4]張正華 and 光電科學, 有機與塑膠太陽能電池. (五南, 2007).
[5]B. Rech, T. Repmann, M. Van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig and S. Wieder, Thin solid films 511, 548-555 (2006).
[6]B. C. Thompson and J. M. Frechet, Angewandte chemie international edition 47 (1), 58-77 (2008).
[7]http://www.nrel.gov/ncpv/.
[8]R. Ramesh and N. A. Spaldin, Nature materials 6 (1), 21-29 (2007).
[9]R. Cava, B. Batlogg, J. Krajewski, R. Farrow, L. Rupp, A. White, K. Short, W. Peck and T. Kometani, Nature 332 (6167), 814-816 (1988).
[10]G. Srinivasan, E. Rasmussen, B. Levin and R. Hayes, Physical Review B 65 (13), 134402 (2002).
[11]G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Advanced Functional Materials 24 (1), 151-157 (2014).
[12]K. T. Butler, J. M. Frost and A. Walsh, Mater. Horiz. 2 (2), 228-231 (2015).
[13]E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel and F. De Angelis, The Journal of Physical Chemistry C 117 (27), 13902-13913 (2013).
[14]K. T. Akihiro Kojima, ‡ Yasuo Shirai,§ and Tsutomu Miyasaka*,†,‡,|, J Am Chem Soc 131 (17), 6050-+ (2009).
[15]H.-W. Chen, N. Sakai, A. K. Jena, Y. Sanehira, M. Ikegami, K.-C. Ho and T. Miyasaka, The journal of physical chemistry letters 6 (9), 1773-1779 (2015).
[16]G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, Science 342 (6156), 344-347 (2013).
[17]D. Wang, M. Wright, N. K. Elumalai and A. Uddin, Solar Energy Materials and Solar Cells 147, 255-275 (2016).
[18]Y. Shi, Y. Xing, Y. Li, Q. Dong, K. Wang, Y. Du, X. Bai, S. Wang, Z. Chen and T. Ma, The Journal of Physical Chemistry C 119 (28), 15868-15873 (2015).
[19]J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature 499 (7458), 316-319 (2013).
[20]M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A. L. Rogach, Y. Yao and Z. Fan, Scientific reports 5 (2015).
[21]J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Energy & Environmental Science 6 (6), 1739-1743 (2013).
[22] M. Liu, M. B. Johnston and H. J. Snaith, Nature 501 (7467), 395-398 (2013).
[23]Z. H. Like Huang, * Guoqiang Yue, Jinwang Liu, Xiaohong Cui, Jing Zhang and a. Y. Zhu*, Phys Chem Chem Phys 17 (34), 22015-22022 (2015).
[24]A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J Am Chem Soc 131 (17), 6050-6051 (2009).
[25]H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science 345 (6196), 542-546 (2014).
[26]T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee and H. J. Snaith, ACS nano 8 (7), 7147-7155 (2014).
[27]S. Y. Leblebici, L. Leppert, Y. Li, S. E. Reyes-Lillo, S. Wickenburg, E. Wong, J. Lee, M. Melli, D. Ziegler and D. K. Angell, Nature Energy 1, 16093 (2016).
[28]E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes and D. Cahen, Nature communications 5 (2014).
[29]A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel and J.-E. Moser, Nature photonics 8 (3), 250-255 (2014).
[30]Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, E. Yassitepe, A. Buin, S. Hoogland and E. H. Sargent, Nature 523 (7560), 324-328 (2015).
[31]S.-S. Li, C.-H. Chang, Y.-C. Wang, C.-W. Lin, D.-Y. Wang, J.-C. Lin, C.-C. Chen, H.-S. Sheu, H.-C. Chia and W.-R. Wu, Energy & Environmental Science (2016).
[32]J.-H. Im, H.-S. Kim and N.-G. Park, Apl Materials 2 (8), 081510 (2014).
[33]T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa and T. Tatsuma, ACS nano 9 (4), 4165-4172 (2015).
[34]C.-R. L. Hui-Seon Kim1, Jeong-Hyeok Im1, Ki-Beom Lee1, Thomas Moehl2, Arianna Marchioro2, Soo-Jin Moon2, Robin Humphry-Baker2, Jun-Ho Yum2, Jacques E. Moser2, Michael Gra¨tzel2 and N.-G. Park1, Sci Rep 2, 591 (2012).
[35]Y. Li, J. Zhu, Y. Huang, J. Wei, F. Liu, Z. Shao, L. Hu, S. Chen, S. Yang and J. Tang, Nanoscale 7 (21), 9902-9907 (2015).
[36]A. Walsh, The Journal of Physical Chemistry C 119 (11), 5755-5760 (2015).
[37]呂登復, 真空實用技術. (國興出版社, 新竹市, 1993).
[38]謝汎鈞, 林炳宏 and 呂日清, 科儀新知 32, 84-90 (2011).
[39]J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar and M. K. Nazeeruddin, Nature Photonics 7 (6), 486-491 (2013).
[40]Y. Zhao and K. Zhu, The Journal of Physical Chemistry C 118 (18), 9412-9418 (2014).
[41]J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature 499 (7458), 316-319 (2013).
[42]N. Ishida, K. Sueoka and R. M. Feenstra, Physical Review B 80 (7), 075320 (2009).
[43]b. Qi Chena, Nicholas De Marcoa,b, Yang (Michael) Yanga,, b. Tze-Bin Songa, Chun-Chao Chena, Hongxiang Zhaoa,b, and H. Z. Ziruo Honga, b, Yang Yanga,b,.
[44]J. Chae, Q. Dong, J. Huang and A. Centrone, Nano letters 15 (12), 8114-8121 (2015).
[45]S. Gaan, G. He, R. M. Feenstra, J. Walker and E. Towe, Journal of Applied Physics 108 (11), 114315 (2010).
[46]J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde and A. Walsh, Nano letters 14 (5), 2584-2590 (2014).
[47]L. Hu, W. Wang, H. Liu, J. Peng, H. Cao, G. Shao, Z. Xia, W. Ma and J. Tang, Journal of Materials Chemistry A 3 (2), 515-518 (2015).
[48]M. Konstantakou, T. Stergiopoulos, V. Likodimos, G. C. Vougioukalakis, L. Sygellou, A. G. Kontos, A. Tserepi and P. Falaras, The Journal of Physical Chemistry C 118 (30), 16760-16775 (2014).
[49]A. Solbrand, H. Lindström, H. Rensmo, A. Hagfeldt, S.-E. Lindquist and S. Södergren, The Journal of Physical Chemistry B 101 (14), 2514-2518 (1997).