簡易檢索 / 詳目顯示

研究生: 林建豪
Chien-Hao Lin
論文名稱: 以理論計算方式探討甲烷在鉑金屬/氧化石墨烯平台上的催化反應研究
Computational Studies For The Mechanisms of CH4 Dissociation and oxidation on Pt/graphene oxide Surface
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 92
中文關鍵詞: 鉑原子氧化石墨烯甲烷理論計算
英文關鍵詞: Platinum atom, Graphene-oxide, methanen, DFT calculation
論文種類: 學術論文
相關次數: 點閱:217下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用密度泛涵理論來計算在氧化石墨烯上吸附兩顆金屬鉑原子,並在兩個金屬原子上各別吸附兩個甲烷氣體,利用催化表面的氧化能力將其轉換成甲醇的過程。根據早期學術上的研究發現鉑金屬對於碳氫化合物的吸附能比起大部分之金屬較大,並且能加速碳氫鍵的斷裂,有利於將甲烷分子氧化成甲醇。所以在計算中,兩顆鉑原子分別吸附兩個甲烷氣體之後(其中鉑原子已和氧化石墨烯有了良好鍵結),我們預測了多條不同氧化路徑,主要分為兩大部分。第一部分總括有三個步驟 (1) 斷其中一顆甲烷的碳氫鍵,使氫原子與氧化石墨烯上的氧原子鍵結形成氫氧根,這時所需之能量為0.34 eV。(2) 斷另一個甲烷上的碳氫鍵,使其吸附在鉑原子上形成甲基,這時所需0.51 eV。(3) 最後我們將甲基和氫氧根結合產生甲醇,此時所需能量為0.2 eV。最後甲醇脫附就完成前半部反應。而後半部反應則是再通入氧氣分子,總括有兩個步驟(1)透過O-O鍵的斷裂和氫氧基的形成,須越過0.34eV 的能障。(2) 將甲基和氫氧根結合產生第二個甲醇,此時所需能量為1.25eV,並同時填補催化表面的氧原子,使其恢復一開始的結構。
    關鍵字: 鉑原子、氧化石墨烯、甲烷、理論計算

    Based on density functional theory (DFT) calculation, the synthesis of methanol from the methane oxidation has been investigated on the graphene oxide nanosheets supporting two platinum atoms (Pt2-graphene oxide). According to previous literature, the platinum atoms could increase the adsorption energies of hydrocarbon species, and facilitate C-H bond scission to form the methanol. In our calculation, two CH4 molecule could be adsorbed on each Pt atom of the Pt2-graphene oxide surface, and the calculated possible mechanism of the methane oxidation reaction includes two parts; before and after the oxygen molecule adding to the system. First section involves the following three sequential steps: (I) dehydrogenation of one methane to the surface oxide to form methyl-Pt(1) and hydroxyl (Ea = 0.34 eV), (II) dehydrogenation of the other methane to Pt atom to form methyl and H-Pt(2) (Ea = 0.51 eV), and then (III) the coupling of the hydroxyl and the methyl to produce the methanol (Ea = 0.20 eV); Then,methanol could be desorbed from Pt2-graphene oxide catalyst. The second section contains two successive steps after adding oxygen molecule: the initial step is the scission of O-O bond and formation of hydroxyl group with the H atom on Pt(2) atom (Ea = 0.34 eV), and then, the hydroxyl would couple with methyl-Pt(1) to produce the other methanol (Ea = 1.25 eV). At last, we could gain two methanol and return to the original graphene oxide .
    Key point: Platinum atom 、Graphene-oxide 、methane 、 DFT

    中文摘要 i 英文摘要 ii 總目錄 iv 第一章 1 緒論 1 第二章 理論與計算方法 4 §2-1 固態材料的電子結構理論 4 §2-1-1 多電子系統計算上的近似 4 §2-1-2 Born-Oppenheimer近似(絕熱近似) 5 §2-1-3 Hartree近似 6 §2-1-4 Hartree-Fork近似 8 §2-2 密度泛函理論 (Density Function Theory,DFT) 9 §2-2-1 Hohenberg-Kohn theorem 9 §2-2-2 Kohn-Sham method 10 § 2-3 局部密度近似法(Local density function approximation, LDA) 12 § 2-4 廣義梯度近似法(Generalized gradient approximation, GGA) 15 § 2-5空間週期性 (periodic boundary condition) 17 § 2-6布洛赫定理(Bloch Theorem) 18 § 2-7虛位勢 (pseudopotential) 20 § 2-8 VASP計算軟體 23 §2-11 態密度(Density of state, DOS) 26 第三章 Pt2-grapgene oxide的分析與氧化甲烷的反應路徑探討 27 §3-1 前言 : 27 §3-2 計算方法與模型建立 : 29 §3-3 結果與討論 : 31 §3-3-1 氧化石墨烯的物理與化學性質 31 §3-3-2 Pt2-grapgene oxide模型的建構 34 §3-3-3 M2-grapgene oxide (M = Ir、Ni、Rh、Ru、Pd)與Pt2-grapgene oxide的比較與分析 42 §3-3-4 CH4斷C-H鍵與Pt2-graphene oxide表面上的氧原子形成 hydroxyl group的路徑和能量討論 52 §3-3-5 第二個CH4斷C-H的路徑與形成不同產物CH3OH、(H2O、C2H6)之能量討論 54 §3-3-5 甲醇脫附後加入水分子或氧分子在Pt2-graphene oxide + CH3(a) + H(a)催化表面上的吸附結構與反應位能之討論 65 §3-3-6 吸附氧氣分子與水分子的結果與討論 75 §3-3-7 Pt2-grapgene oxide與Ptx (x=2~6) cluster-grapgene oxide 的比較與分析 77 §3-3-8 CH4在Ptx-graphene oxide(x = 1~6) 表面或金屬團簇的吸附位置與吸附狀態 84 第四章 總結 86 參考文獻 89

    (1). Milewski, J.; Miller, A.; Sałacinski, J. Int. J. Hydrogen Energy 2007, 32, 687.
    (2). Grove, W. R. Philosophical Magazine and Journal of Science 1838, 13, 430.
    (3). Chen, Y.; Vlachos, D. G. Ind. Eng. Chem. Res. 2012, 51, 12244.
    (4). Mhadeshwar, A. B.; Vlachos, D. G. J. Phys. Chem. B 2005, 109, 16819.
    (5). Psofogiannakis, G.; Amant, A, S.; Ternan, M. J. Phys. Chem. B 2006, 110, 24593.
    (6). Sharma, S,; Ganguly, A,; Papakonstantinou, P,; Miao, X,; Li, M,;
    Hutchison, J, L,; Delichatsios, M,; Ukleja, S. J. Phys. Chem. C 2010, 114, 19459.
    (7). Henrich, V. E.; Cox P.A. The Surface Science of Metal Oxides, Cambridge, University Press, Cambridge, 1994.
    (8). Jacobson, L, C.; Molinero, V. J. Phys. Chem. B 2010, 114, 7302.
    (9). Wei, J.; Iglesia, E. J. Phys. Chem. B 2004, 108, 4094.
    (10). Havran, V.; Dudukovi’c, M, P.; Lo, C, S. Ind. Eng. Chem. Res. 2011, 50, 7089.
    (11). Huang, W.; Xie, K, C.; Wang, J, P.; Gao, Z, H .; Yin, L, H.; Zhu, Q, M. Journal of Catalysis 2001, 201, 100.
    (12). Dianat, A.; Seriani, N.; Ciacchi, L, C.; Pompe, W.; Cuniberti, G.; Bobeth, B. J. Phys. Chem. C 2009, 113, 21097.
    (13). Wang, L.; Sun, Y, Y.; Lee, K.; West, D.; Chen, Z, F.; Zhao, J, J.; Zhang, S, B. Phys. Rev. B 2010, 82, 161406(R).
    (14). Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F, Y, C.;
    Yan, Q.; Chen, P.; Zhang, H. J. Phys. Chem. C, Vol 2009, 113, 10842.
    (15). Zhu, Q.; Lu, Y, H.; Jiang, J, Z. J. Phys. Chem. Lett. 2011, 2, 1310.
    (16). Novoselov, K, S.; Geim, A, K.; Morozov, S, V.; Jiang, D.; Zhang,
    Y.; Dubonos, S, V.; Grigorieva, I. V.; Firsov, A, A. Science 2004,
    306, 666.
    (17). Wang, L.; Zhao, J.; Wang, L.; Yan, T.; Sun, Y, Y.; Zhang, S, B.
    Phys. Chem. Chem. Phys 2011,13, 21126.
    (18). Chen, C.; Zhang, J.; Zhang, B.; Duan, H, M. J. Phys. Chem. C 2013, 117, 4337
    (19). Li, Y.; Sarkar1, A, D.; Pathak, B.; Ahuja, R. Appl. Phys. Lett. 2013, 102, 243905.
    (20). Yang, M.; Zhou, M.; Zhang, A.; Zhang, C. J. Phys. Chem. C 2012,
    116, 22336.
    (21). Pyun, J. Angew. Chem. Int. Ed 2011, 50, 46.
    (22). Lightcap, I, V.; Kosel, T, H.; Kamat, P, V. Nano Lett. 2010, 10, 577.

    (23). Li, F.; Zhao, J.; Chen, Z. J. Phys. Chem. C 2012, 116, 2507.
    (24). Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
    (25). Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
    (26). Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
    (27). Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
    (28). Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.
    (29). Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
    (30). Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000,
    113, 9901.
    (31). Silvi, B.; Savin, A. Nature 1994, 371, 683.
    (32). Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H. G. Angew. Chem. Int. Ed. Engl. 1991, 30, 409.
    (33). Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
    (34). Qiao, B.; Wang, A.; Yang, X.; Allard, L, F.; Jiang, Z.; Cui, Y.;
    Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634.
    (35). Sun, S.; Zhang, G.; Gauquelin, G.; Chen, G.; Zhou, J.; Yang, S.;
    Chen, W.; Meng, X.; Geng, D.; Banis, M, N.; Li, R.; Ye, S.; Knights, S.; Botton, G, A.; Sham, T, K.; Sun, X. Sci Rep 2013, 3, 1775.
    (36). Tzeng, Y, R.; Pai, W, W.; Tsao, C, S.; Yu, M, S. J. Phys. Chem. C 2011, 115, 12023
    (37). Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.;
    Li, J.; Liu, J.; Zhang, T. J. Am. Chem. Soc. 2013, 135, 15314.
    (38). Ghaderi, N.; Peressi, M. J. Phys. Chem. C 2010, 114, 21625.
    (39). Qin, W.; Li, X. J. Phys. Chem. C 2010, 114, 19009.
    (40). Fampiou, I.; Ramasubramaniam, A. J. Phys. Chem. C 2013, 117, 19927.
    (41).Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.;
    Hutchison, J, L.; Delichatsios, M.; Ukleja, S. J. Phys. Chem. C 2010, 114, 19459.
    (42). Chang, T, Y.; Tanaka, Y.; Ishikawa, R.; Toyoura, K.; Matsunaga, K.;
    Ikuhara, Y.; Shibata, N. Nano Lett. 2014, 14, 134.
    (43). Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
    (44). Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    (45). Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    (46). Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (47). Grinou, A.; Yun, Y, S.; Cho, S, Y.; Park,H, H.; Jin, H, J. Materials 2012, 5, 2927.

    下載圖示
    QR CODE