簡易檢索 / 詳目顯示

研究生: 王顗慈
Wang, Yi-Tzu
論文名稱: 山區農業對生態系營養循環的影響—以坪林茶園為例
The effects of mountain tea plantations on nutrient cycling- A case study in northern Taiwan
指導教授: 林登秋
Lin, Teng-Chiu
口試委員: 黃誌川 張仲德 林登秋
口試日期: 2021/10/01
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 茶園淨穿落量霧水化學含氮肥料林冠交換
英文關鍵詞: tea plantations, net throughfall flux, fog chemistry, N fertilizer, canopy exchange
DOI URL: http://doi.org/10.6345/NTNU202101565
論文種類: 學術論文
相關次數: 點閱:107下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 攔截沉降(Occult deposition)是大氣沉降物經由雲霧進入營養循環的沉降型態。此形式進入生態系水量雖相對雨水少,但因雲霧一般形成於 污染物濃度較高的近地表處,而且霧滴的顆粒粒徑較小導致霧水攔截 物質的總表面積遠高於相同體積的雨水,使得霧水中污染物濃度通常 較雨水高,物質透過雲霧進入生態系統的量亦可能相當可觀。臺灣的雲 霧林帶是茶葉的重要產區,除降雨外,雲霧也是營養輸入的重要途徑, 為因應全球茶葉需求增加,大量施用含氮肥料、茶園面積擴張均可能直 接或間接影響生態系統營養收支的平衡。本研究於台灣北部地區的一 處茶園收集並分析雨水、霧水、穿落水、溪水,以評估山區農業生態系 統營養收支的情形。離子在雨水中的濃度由高到低依序為 Cl- > Na+ > SO42- > K+ > NO3- > NH4+ > Ca2+ > Mg2+,在霧水中則為 Na+ > Cl- > NO3- > Mg2+ > SO42- > Ca2+ > NH4+ > K+。由於研究茶園靠近台灣東北海岸, Cl-、Na+是雨霧水中相對豐富度最高的離子,顯示海洋飛沫是影響雨霧 水化學的重要因素。所有離子和有機氮在霧水中的濃度均明顯高於雨水,而離子濃度比率(fog : precipitation)由小到大依序為 K+ (2.11) < NH4+ (5.59) < SO42- (6.99) < Ca2+ (9.25) < Cl- (9.26) < NO3- (10.3) < Na+ (14.2) < Mg2+ (22.2) < DON (46.9),介於有主要污染來源 (多大於 10)和沒有污染來源 (小於 5)的地區間,可能和茶園鄰近大台北地區但周圍主要被森林覆蓋有關。主成分分析結果指出農業活動是造成霧水 K+、NH4+濃 度變異的主要原因,表明霧水化學更容易因局部地區排放而改變。Ca2+、 Mg2+在穿落水中含量較高,應是來自雨水與茶樹樹冠的淋溶作用,且 雨水中多數離子的濃度和淨穿落量的負向關係顯示濃度梯度差可能是 造成雨水與茶樹樹冠交換的重要機制。

    Occult deposition is deposition of pollutants by direct contact with mist or cloud. The total quantity of fog water is in general much less than that of rain water, however, concentrations in cloud water could be very high. This is because the formation of fog is close to the ground where concentration of air pollutants is high and the per unit volume surface of fog is much higher than that of rain. Due to higher concentrations, the contribution of chemical deposition from fog often exceeds its contribution on water input and its effects on ecosystem cannot be neglected. Cloud forest in Taiwan is also important for tea plantation. In addition to precipitation, fog is another important pathway of atmospheric deposition in tea plantations. As global tea consumption is increasing, tea plantations are expanding and more nitrogen fertilizers are used to increase yields, which could directly or indirectly influence ecosystems. Through collection and analyses of rainfall, fog, throughfall, and stream water, this study aims to evaluate the impacts of atmospheric deposition on nutrient input-output of tea plantations in northern Taiwan. The abundance order of all ions was Cl- > Na+ > SO42- > K+ > NO3- >NH4+ >Ca2+ >Mg2+ inrainwaterandNa+>Cl- >NO3- >Mg2+ >SO42- > Ca2+ > NH4+ > K+ in fog water. Cl- and Na+ were the most abundant ions in both fog and rain water, indicating strong oceanic influences on water chemistry. The concentrations of all ions were much higher in fog water and the ratio to fog and rain was K+ (2.11) < NH4+ (5.59) < SO42- (6.99) < Ca2+(9.25) < Cl- (9.26) < NO3- (10.3) < Na+ (14.2) < Mg2+ (22.2) < DON (46.9), which lies between sites with (mostly were larger than 10) and without (less than 5) major emission, possibly because the study site is close to big cities but the surroundings are well covered with forest. Results from principal component analysis indicates that agriculture influence is the main factor for explaining variance of K+ and NH4+ concentrations in fog water but not rain water. The result indicates that fog was more affected by local air pollution. The amount of Ca2+ and Mg2+ in throughfall is higher than in rain water possibly because canopy leaching. Moreover, the negative relationship between net throughfall flux and its concentration in rain water for most ions suggested that passive movement was important in characterizing throughfall dynamics.

    摘要 ii Abstract iv 第一章 前言 1 一、研究背景及目的 1 二、研究重要性 5 三、研究問題 6 第二章 研究方法 7 一、樣區介紹 7 二、氣象資料 9 三、採樣方法 10 四、水樣處理 16 五、化學分析 17 六、資料分析 18 第三章 研究結果 24 一、茶園霧況 24 二、兩種集霧器水化學比較 27 三、雨水、穿落水、霧水、溪水的化學性質 31 1、雨水、霧水化學組成差異 33 2、雨水、穿落水化學性質差異 37 第四章 討論 41 一、雨、霧的水化學 41 二、雨、穿落水的水化學 48 第五章 結論 52 參考文獻 54 附錄 65

    黃昭豪、張世杰。 (2007)。 臺灣扁柏森林冠層間之雲霧化學及其沉降量估算。國立東華大學自然資源管理研究所碩士論文。
    張庭瑄。 (2020)。 山區農業濕沉降化學性質-以石碇為例。國立臺灣師範大學生命科學系碩士論文。
    Aikawa, M., Hiraki, T., & Tamaki, M. (2006). Comparative field study on precipitation, throughfall, stemflow, fog water, and atmospheric aerosol and gases at urban and rural sites in Japan. Science of The Total Environment, 366(1), 275–285.
    Avila, A. (1996). Time trends in the precipitation chemistry at a mountain site in northeastern Spain for the period 1983–1994. Atmospheric environment, 30(9), 1363–1373.
    Bauters, M., Drake, T. W., Verbeeck, H., Bodé, S., Hervé-Fernández, P., Zito, P., Podgorski, D. C., Boyemba, F., Makelele, I., Cizungu Ntaboba, L., Spencer, R. G. M., & Boeckx, P. (2018). High fire-derived nitrogen deposition on central African forests. Proceedings of the National Academy of Sciences, 115(3), 549–554.
    Behera, S. N., Sharma, M., Aneja, V. P., & Balasubramanian, R. (2013). Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 20(11), 8092–8131.
    Beiderwieden, E., Wrzesinsky, T., & Klemm, O. (2005). Chemical
    characterization of fog and rain water collected at the eastern Andes
    cordillera. Hydrology and Earth System Sciences, 9(3), 185-191.
    Benhadi-Marín, J. (2018). A conceptual framework to deal with outliers in ecology. Biodiversity and Conservation, 27(12), 3295–3300.
    Breemen, N. van, Driscoll, C. T., & Mulder, J. (1984). Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 307(5952), 599–604.
    Bridges, K. S., Jickells, T. D., Davies, T. D., Zeman, Z., & Hunova, I. (2002). Aerosol, precipitation and cloud water chemistry observations on the Czech Krusne Hory plateau adjacent to a heavily industrialised valley. Atmospheric Environment, 36(2), 353–360.
    Brooks, P. D., Grogan, P., Templer, P. H., Groffman, P., Öquist, M. G., & Schimel, J. (2011). Carbon and Nitrogen Cycling in Snow-Covered Environments: Carbon and nitrogen cycling in snow-covered environments. Geography Compass, 5(9), 682–699.
    Brown, A. D., & Lund, L. J. (1994). Factors Controlling Throughfall Characteristics at a High Elevation Sierra Nevada Site, California. Journal of Environmental Quality, 23(4), 844–850.
    Cape, J. N., Brown, A. H. F., Robertson, S. M. C., Howson, G., & Paterson, I. S. (1991). Interspecies comparisons of throughfall and stemflow at three sites in northern Britain. Forest Ecology and Management, 46(3–4), 165–177.
    Chang, C.-T., Lin, T.-C., & Hsueh, M.-L. (2005). Characterizinig Precipitation Chemistry in Changhua, Central Taiwan Using Weather Conditions and Multivariate Analysis. Water, Air, and Soil Pollution, 165(1–4), 61–75.
    Chang, C.-T., Wang, C.-P., Huang, J.-C., Wang, L.-J., Liu, C.-P., & Lin,T.-C. (2017). Trends of two decadal precipitation chemistry in a subtropical rainforest in East Asia. Science of The Total Environment, 605–606, 88–98.
    Chang, C.-T., Yang, C.-J., Huang, K.-H., Huang, J.-C., & Lin, T.-C. (2021). Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Science of The Total Environment, 150552.
    Chang, S.-C., Lai, I.-L., & Wu, J.-T. (2002). Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64(1–4), 159–167.
    Cheruiyot, E. K., Mumera, L. M., Ng’etich, W. K., Hassanali, A., & Wachira, F. N. (2009). High fertilizer rates increase susceptibility of tea to water stress. Journal of Plant Nutrition, 33(1), 115–129.
    Chow, M. F., Shiah, F. K., Lai, C. C., Kuo, H. Y., Wang, K. W., Lin, C. H., Chen, T. Y., Kobayashi, Y., & Ko, C. Y. (2016). Evaluation of surface water quality using multivariate statistical techniques: A case study of Fei-Tsui Reservoir basin, Taiwan. Environmental Earth Sciences, 75(1), 6.
    Collett, J. L., Bator, A., Sherman, D. E., Moore, K. F., Hoag, K. J., Demoz, B. B., Rao, X., & Reilly, J. E. (2002). The chemical composition of fogs and intercepted clouds in the United States. Atmospheric Research, 64(1–4), 29–40.
    Cornell, S. E. (2011). Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component. Environmental Pollution, 159(10), 2214–2222.
    DeHayes, D. H., Schaberg, P. G., Hawley, G. J., & Strimbeck, G. R. (1999). Acid Rain Impacts on Calcium Nutrition and Forest Health. BioScience, 49(10), 789–800.
    Demoz, B. B., Collett, J. L., & Daube, B. C. (1996). On the Caltech Active Strand Cloudwater Collectors. Atmospheric Research, 41(1), 47–62.
    Eaton, J. S., Likens, G. E., & Bormann, F. H. (1973). Throughfall and Stemflow Chemistry in a Northern Hardwood Forest. The Journal of Ecology, 61(2), 495.
    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., Chapin III, F. S., Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L., Reichstein, M., Rodà, F., & Peñuelas, J. (2014). Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 4(6), 471–476.
    Freiesleben, N. E. v., & Rasmussen, L. (1986). Effects of acid rain on ion leaching in a danish forest soil. Water, Air, & Soil Pollution, 31(3–4), 965–968.
    Galloway, J. N. (1995). Acid deposition: Perspectives in time and space. Water, Air, & Soil Pollution, 85(1), 15–24.
    Gosz, J. R. (1980). Nutrient Budget Studies for Forests Along an Elevational Gradient in New Mexico. Ecology, 61(3), 515–521. Herckes, P., Wortham, H., Mirabel, P., & Millet, M. (2002). Evolution of
    the fogwater composition in Strasbourg (France) from 1990 to 1999.
    Atmospheric Research, 64(1–4), 53–62.
    Igawa, M., Kase, T., Satake, K., & Okochi, H. (2002). Severe leaching of
    calcium ions from fir needles caused by acid fog. Environmental Pollution, 119(3), 375–382.
    Igawa, M., Matsumura, K., & Okochi, H. (2002). High Frequency and
    Large Deposition of Acid Fog on High Elevation Forest.
    Environmental Science & Technology, 36(1), 1–6.
    Igawa, M., Tsutsumi, Y., Mori, T., & Okochi, H. (1998). Fogwater
    Chemistry at a Mountainside Forest and the Estimation of the Air Pollutant Deposition via Fog Droplets Based on the Atmospheric Quality at the Mountain Base. Environmental Science & Technology, 32(11), 1566–1572.
    Jacob, D. J., Waldman, J. M., Munger, J. William., & Hoffmann, M. R. (1985). Chemical composition of fogwater collected along the California coast. Environmental Science & Technology, 19(8), 730– 736.
    Ji, L., Wu, Z., You, Z., Yi, X., Ni, K., Guo, S., & Ruan, J. (2018). Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agriculture, Ecosystems & Environment, 268, 124–132.
    Keene, W. C., Pszenny, A. A. P., Galloway, J. N., & Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research, 91(D6), 6647.
    Keresztesi, Á., Birsan, M.-V., Nita, I.-A., Bodor, Z., & Szép, R. (2019). Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environmental Sciences Europe, 31(1), 50.
    Klemm, O., Tseng, W.-T., Lin, C.-C., Klemm, K., & Lin, N.-H. (2015). pH Control in Fog and Rain in East Asia: Temporal Advection of Clean
    Air Masses to Mt. Bamboo, Taiwan. Atmosphere, 6(11), 1785–1800. Klemm, O., & Wrzesinsky, T. (2007). Fog deposition fluxes of water and ions to a mountainous site in Central Europe. Tellus B: Chemical and
    Physical Meteorology, 59(4), 705–714.
    Klemm, O., Wrzesinsky, T., Gerchau, J., & Griessbaum, F. (2008). A
    Collector for Fog Water and Interstitial Aerosol. Journal of
    Atmospheric and Oceanic Technology, 25(2), 335–340.
    Krupa, S. V. (2002). Sampling and physico-chemical analysis of
    precipitation: A review. Environmental Pollution, 120(3), 565–594. Lange, C. (2003). Fog frequency and chemical composition of fog water—A relevant contribution to atmospheric deposition in the eastern Erzgebirge, Germany. Atmospheric Environment, 37(26),
    3731–3739.
    Liang, Y.-L., Lin, T.-C., Hwong, J.-L., Lin, N.-H., & Wang, C.-P. (2009).
    Fog and Precipitation Chemistry at a Mid-land Forest in Central
    Taiwan. Journal of Environment Quality, 38(2), 627.
    Likens, G. E., & Bormann, F. H. (1974). Acid Rain: A Serious Regional
    Environmental Problem. Science, 184(4142), 1176–1179.
    Likens, G. E., Driscoll, C. T., & Buso, D. C. (1996). Long-Term Effects of Acid Rain: Response and Recovery of a Forest Ecosystem. Science,
    272(5259), 244–246.
    Lin, T.-C., Hamburg, S. P., King, H., & Hsia, Y. (2000). Throughfall
    Patterns in a Subtropical Rain Forest of Northeastern Taiwan. Journal of Environmental Quality, 29(4), 1186–1193.
    Lin, T.-C., Hamburg, S. P., Lin, K.-C., Wang, L.-J., Chang, C.-T., Hsia, Y.-J., Vadeboncoeur, M. A., Mabry McMullen, C. M., & Liu, C.-P. (2011). Typhoon Disturbance and Forest Dynamics: Lessons from a Northwest Pacific Subtropical Forest. Ecosystems, 14(1), 127–143.
    Lin, T.-C., Shaner, P.-J. L., Wang, L.-J., Shih, Y.-T., Wang, C.-P., Huang, G.-H., & Huang, J.-C. (2015). Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrology and Earth System Sciences, 19(11), 4493–4504.
    Liu, W., Luo, Q., Lu, H., Wu, J., & Duan, W. (2017). The effect of litter layer on controlling surface runoff and erosion in rubber plantations on tropical mountain slopes, SW China. Catena, 149, 167–175.
    Lovett, G. M., Reiners, W. A., & Olson, R. K. (1982). Cloud Droplet Deposition in Subalpine Balsam Fir Forests: Hydrological and Chemical Inputs. Science, 218(4579), 1303–1304.
    Lu, C., Niu, S., Tang, L., Lv, J., Zhao, L., & Zhu, B. (2010). Chemical composition of fog water in Nanjing area of China and its related fog microphysics. Atmospheric Research, 97(1–2), 47–69.
    Mæller, D. (1990). The Na/Cl ratio in rainwater and the seasalt chloride cycle. Tellus B, 42(3), 254–262.
    Manny, B. A., Fahnenstiel, G. L., & Gardner, W. S. (1987). Acid Rain Stimulation of Lake Michigan Phytoplankton Growth. Journal of Great Lakes Research, 13(2), 218–223.
    Moore, K. F., Sherman, D. E., Reilly, J. E., & Collett, J. L. (2002). Development of a multi-stage cloud water collector Part 1: Design and field performance evaluation. Atmospheric Environment, 36(1), 31–44.
    NADP, 2002. Quality Assurance Plan, Central Analytical Laboratory, 2002.
    National Atmospheric Deposition Program. Illinois, USA. Version 1.3,
    pp. 23-25.
    Oddie, B. C. V. (1959). Potassium/Sodium Ratio in Rainwater. Nature,
    184(4701), 1791–1791.
    Parker, G. G. (1983). Throughfall and Stemflow in the Forest Nutrient
    Cycle. Advances in Ecological Research, 13, 57-133.
    Pierret, M.-C., Viville, D., Dambrine, E., Cotel, S., & Probst, A. (2019). Twenty-five year record of chemicals in open field precipitation and throughfall from a medium-altitude forest catchment (Strengbach - NE France): An obvious response to atmospheric pollution trends.
    Atmospheric Environment, 202, 296–314.
    Post, D., Bridgman, H. A., & Ayers, G. P. (1991). Fog and rainwater
    composition in rural SE Australia. Journal of Atmospheric Chemistry,
    13(1), 83–95.
    Schaefer, D. A., & Reiners, W. A. (1990). Throughfall chemistry and
    canopy processing mechanisms. In Acidic precipitation (pp. 241-284).
    Springer, New York, NY.
    Schier, G. A. (1987). Throughfall chemistry in a red maple provenance
    plantation sprayed with “acid rain.” Canadian Journal of Forest
    Research, 17(7), 660–665.
    Simon, S. (2016). Chemical Composition of Fog Water at Four Sites in
    Taiwan. Aerosol and Air Quality Research, 16(3), 618–631.
    Singh, A., & Agrawal, M. (2007). Acid rain and its ecological consequences. Journal of Environmental Biology, 29(1), 15.
    Sun, J., Hu, H., Li, Y., Wang, L., Zhou, Q., & Huang, X. (2016). Effects and mechanism of acid rain on plant chloroplast ATP synthase. Environmental Science and Pollution Research, 23(18), 18296–
    18306.
    Sun, X., Wang, Y., Li, H., Yang, X., Sun, L., Wang, X., Wang, T., & Wang,
    W. (2016). Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China. Environmental Science and Pollution Research, 23(10), 9529–9539.
    Tenberken, B., & Bächmann, K. (1998). Sampling and analysis of single cloud and fog drops. Atmospheric Environment, 32(10), 1757–1763.
    Thalmann, E., Burkard, R., Wrzesinsky, T., Eugster, W., & Klemm, O. (2002). Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmospheric Research, 64(1–4), 147–158.
    Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893–906.
    Ulrich, B. (1990). Waldsterben: Forest decline in West Germany. Environmental Science & Technology, 24(4), 436–441.
    Unsworth, M., & Wilshaw, J. (1989). Wet, occult and dry deposition of pollutants on forests. Agricultural and Forest Meteorology, 47(2–4), 221–238.
    Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., ... Reid, N. W. (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93, 3–100.
    Wang, W., Xu, W., Collett, J. L., Liu, D., Zheng, A., Dore, A. J., & Liu, X. (2019). Chemical compositions of fog and precipitation at Sejila Mountain in the southeast Tibetan Plateau, China. Environmental Pollution, 253, 560–568.
    Watanabe, I. (1995). Effect of Nitrogen Fertilizer Application at Different Stages on the Quality of Green Tea. Soil Science and Plant Nutrition, 41(4), 763–768.
    Watanabe, K., Honoki, H., Iwai, A., Tomatsu, A., Noritake, K., Miyashita, N., Yamada, K., Yamada, H., Kawamura, H., & Aoki, K. (2010). Chemical Characteristics of Fog Water at Mt. Tateyama, Near the Coast of the Japan Sea in Central Japan. Water, Air, & Soil Pollution, 211(1–4), 379–393.
    Wieder, W. R., Cleveland, C. C., Smith, W. K., & Todd-Brown, K. (2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8(6), 441–444.
    Wipf, S., Sommerkorn, M., Stutter, M. I., Wubs, E. J., & Van Der Wal, R. (2015). Snow cover, freeze‐thaw, and the retention of nutrients in an oceanic mountain ecosystem. Ecosphere, 6(10), 1-16.
    Xiao, Q., & McPherson, E. G. (2011). Rainfall interception of three trees in Oakland, California. Urban Ecosystems, 14(4), 755–769.
    Yang, B., Lee, D. K., Heo, H. K., & Biging, G. (2019). The effects of tree characteristics on rainfall interception in urban areas. Landscape and Ecological Engineering, 15(3), 289–296.
    Zimmermann, F., Lux, H., Maenhaut, W., Matschullat, J., Plessow, K., Reuter, F., & Wienhaus, O. (2003). A review of air pollution and atmospheric deposition dynamics in southern Saxony, Germany, Central Europe. Atmospheric Environment, 37(5), 671–691.

    下載圖示
    QR CODE