簡易檢索 / 詳目顯示

研究生: 蕭暐亮
Hsiao, Wei-Liang
論文名稱: 奈米氮化硼齒輪油對機車引擎性能與廢氣排放影響之研究
The Study on Scooter Engine Performance and Exhaust Emissions Using Nano Boron Nitride Gear Oil
指導教授: 呂有豐
Lue, Yeou-Feng
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 奈米氮化硼齒輪油磨潤能源效率(km/L)廢氣汙染排放粒狀汙染物(PM)
英文關鍵詞: nano boron nitride, gear oil, Tribology, energy efficiency(km/L), Exhaust emissions, Particulate matter (PM)
DOI URL: http://doi.org/10.6345/NTNU202001012
論文種類: 學術論文
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對四行程機車,添加耐磨性質之奈米氮化硼粉末於原廠齒輪油(SAE 85W140)中,探討機車在運行時的能源效率(km/L)、齒輪油溫度特性變化、廢氣污染排放及粒狀汙染物(PM)做為實驗成果的效益評估。本研究之奈米氮化硼齒輪油調配比例為0、0.1、0.5與1.0 wt.%,經基礎性質比較,最後選擇綜效表現最佳及最符合經濟效益的0.1 wt.%齒輪油,作為實車樣本。在磨潤實驗中,奈米氮化硼齒輪油相較於原廠齒輪油,平均降低26.54 %的磨耗量,在熱傳導實驗中,奈米氮化硼齒輪油相較於原廠齒輪油,平均增加0.5 %的導熱係數。在實車實驗中,經由市區及定速的行車型態測試下,奈米氮化硼齒輪油平均能源效率(km/L)改善了3.7 %。在油門開度50 %的測試下,平路與爬坡(4度坡)車速增加了0.9及6.5 %。在ECE-40測試的溫度量測中,齒輪油溫度分別上升7.1 %。在廢氣排放量測中,HC與CO總量減少了31.3 %、25 %,CO2排放提升了47 %,PM值排放在粒徑5 μm以下總量增加了45.22 %。實驗證明奈米氮化硼齒輪油可以提供齒輪較佳潤滑與散熱之效果,並從排放之CO2與PM值的提升可以證實引擎燃燒變得更完全,並降低HC與CO之排放。

In this study, the wear-resistant nano boron nitride (BN) powder was added to the original gear oil (SAE 85W140), which is using on four-stroke scooter. To evaluate the experimental results, the energy efficiency (km / L), characteristics of gear oil temperature, and the exhaust emissions, such as HC, CO and PM of the scooter using nano BN gear oil were all considered. In this study, nano boron nitride gear oil with 0, 0.1, 0.5 and 1.0 wt.% were tested respectively by basic properties comparison and the most economic benefit; Finally 0.1 wt.% nano BN came out to be the best candidate for the four-stroke engine scooter experiments. In the tribology experiment, it has an average reduction of 26.54% compared with the original gear oil. In the thermal conductivity experiment ,there is an average increasing of 0.5 % compared with the original gear oil. In the field test, the average energy efficiency (km/L) improved by 3.7% under condition of urban and constant speed driving cycle. Moreover, the speed of the flat road and the climbing (four-degree slope) increased by 0.9 and 6.5% under 50% of throttle condition. In the temperature characteristics during the ECE-40 test, the nano BN gear oil temperature was increased by 7.1%. In the exhaust emissions, the total amount of HC and CO decreased by 31.3% and 25% respectively. As for the CO2 emission and the PM value which is the total amount of 5 μm particle size and smaller increased by 47% and 45.22% respectively. Experiments proved that the nano BN gear oil can provide better effect of lubrication and heat dissipation for the gear. Furthermore, the increasing CO2 and PM value can also prove that it make the engine burn more completely and reduce the emissions of HC and CO.

目次 摘要 i Abstract ii 目次 iv 表次 vii 圖次 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 4 1.4 研究方法 4 1.5 論文架構 6 1.6 文獻回顧 6 第二章 相關理論與分析 9 2.1 潤滑 9 2.2 奈米流體 10 2.2.1奈米流體製備 11 2.2.2 奈米流體性質 11 2.3 奈米氮化硼相關研究 16 2.4齒輪油功用 18 2.5 車輛油耗測試方式 19 2.6機車廢氣排放污染測試方法 20 2.7機車噪音量試驗法 21 第三章 實驗方法與裝置 23 3.1 奈米材料檢測 24 3.1.1 奈米粒子外觀檢測 24 3.2 NBNGO製備 25 3.2.1 NBNGO樣本製備 25 3.3 NBNGO基礎性質量測 30 3.3.1 沉降實驗 30 3.3.2 黏度量測實驗 31 3.3.3 比熱量測實驗 34 3.3.4 熱傳導量測實驗 37 3.4 NBNGO應用測試 41 3.4.1 磨潤實驗 41 3.4.2 實車實驗 45 第四章 實驗結果與討論 57 4.1 奈米材料檢測 57 4.1.1 奈米粒子表觀檢測結果 57 4.1.2 NBNGO沉降實驗結果 58 4.2 NBNGO基礎性質量測 60 4.2.1 NBNGO黏度量測實驗 60 4.2.2 NBNGO比熱量測實驗 61 4.2.3 NBNGO熱傳導量測實驗 62 4.3 NBNGO應用測試 64 4.3.1 磨潤測試 64 4.4 基礎性質綜合比較 68 4.5 實車測試 69 4.5.1能源效率值測試 69 4.5.2 平路與爬坡測試 73 4.5.3 溫度特性測試 77 4.5.4 廢氣排放 79 4.5.5 噪音測試 85 第五章 結論與建議 87 5.1 結論 87 5.2 後續研究與建議 88 參考文獻 89 符號釋義 95

[1] 中華民國交通部,台灣交通工具統計查詢網,取自https://www.motc.gov.tw/ch/home.jsp?id=59&parentpath=0,6,2020年。
[2] L. Liu , Q. Zhou, X. Yang, G.Li , J. Zhang, X. Zhou and W. Jiang, “ Cytotoxicity of the soluble and insoluble fractions of atmospheric fine particulate matter”, Journal of Environmental Sciences, vol. 91, pp. 105-116, 2020.
[3] 中華民國行政院環保署,全國空氣汙染物排放量清冊資訊系統,取自https://air.epa.gov.tw/EnvTopics/AirQuality_7.aspx,2019年。
[4] C.M. Taylor, “ Automobile engine tribology—design considerations for efficiency and durability”, Wear, vol. 221, pp. 1-8, 1998.
[5] L. Heli, L. Huaiju, Z. Caichao and R. G. Parker, “Effects of lubrication on gear performance: A review”, Mechanism and Machine Theory, vol. 145, 2020.
[6] J. M. L. d. Rio, E. R. Lopez and J. Fernandez, “Synergy between boron nitride or graphene nanoplatelets and tri(butyl)ethylphosphonium diethylphosphate ionic liquid as lubricant additives of triisotridecyltrimellitate oil”, Journal of Molecular Liquids, vol.301, 2020.
[7] A. Saxena, S. Gangwar, G. K. Ghosh, R. K. Patel and V. Chaudhary, “Rheological properties analysis of MWCNT/graphene hybrid-gear oil (SAE EP-90) nanolubricants”, Materialstoday Proceedings, 2020.
[8] H. Pourpasha, S. Z. Heris, O. Mahianb and S. Wongwises“The effect of multi-wall carbon nanotubes/turbine meter oil nanofluid concentration on the thermophysical properties of lubricants”, Powder Technology, vol. 367, pp. 133-142, 2020.
[9] Y. Y. Wu, W. C. Tsui and T. C. Liu, “Experimental analysis of tribological properties of lubricating oils with nanoparticle additives”, Wear, vol. 262, pp. 819-825, 2007.
[10] J. A. Brandao, M. Meheux, F. Ville, J. H.O. Seabra and J. Castro, ” Comparative overview of five gear oils in mixed and boundary film lubrication”, Tribology International, vol. 47, pp. 50-61, 2012.
[11] H. J. Song, Z. Z. Zhang and X. H. Men, “The tribological behaviors of the polyurethane coating filled with nano-SiO2 under different lubrication conditions”, Composites Part A: Applied Science and Manufacturing, vol. 39, iss. 2, pp. 188-194, 2008.
[12] L. Yang, W. Ji, J. Huang and G. Xu, “An updated review on the influential parameters on thermal conductivity of nano-fluids”, Journal of Molecular Liquids, vol. 296 , 2019.
[13] A. Moradi, M. Zareh, M. Afrand and M. Khayat,“Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70-30)/EG-water hybrid nano-fluid”, Powder Technology, vol. 362, pp. 578-585, 2020.
[14] A.Kotia, G. K. Ghosh, I. Srivastava, P. Deval and S. K. Ghosh, “Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants”, Journal of Alloys and Compounds, vol. 782, pp. 592-599, 2019.
[15] S. Z. Wen,“Study on Lubrication Theory-progress and Thinking-over”, Tribology, vol. 27, pp. 497-503, 2007.
[16] S. U. S. Choi, “Thermal Conductivity of Fluids With Nanoparticles”, Proc. ASME Int. Mech. Eng. Congr. Expo, vol. 66, pp. 99-105, 1995.
[17]H. Pordanjani, S. Aghakhani, A. Karimipour, M. Afrand and M. Goodarzi, “Investigation of free convection heat transfer and entropy generation of nano-fluids flow inside a cavity affected by magnetic field and thermal radiation”, Journal of Thermal Analysis and Calorimetry , pp. 997-1019, 2019.
[18]A.H. Pordanjani, S. Aghakhani, A. A. Alnaqi and M. Afrand,“Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions”, International Journal of Mechanical Sciences, vol. 152, pp. 99-117, 2019.
[19] S.M. Vahedi, A.H. Pordanjani, A. Raisi and A.J. Chamkha,“Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge”, The European Physical Journal Plus, vol. 134, 2019.
[20] A. Kapıcıoğlu and H. Esen, ” Experimental investigation on using Al2O3/ethylene glycol-water nano-fluid in different types of horizontal ground heat”, Applied Thermal Engineering, vol. 165 , 2020.
[21] H. Singh, A. K. Singh, Y. K. Singla and K. Chattopadhyay, ” Design & development of a low cost tribometer for nano particulate lubricants”, heat transfer and pumping power”, Materialstoday:Proceeding, 2020.
[22]G.Narendar, A.V.S.S K. SwamiGupta, A. Krishnaiah, and M.G.V.Satyanarayana, “Experimental investigation on the preparation and applications of Nano fluids”, Materialstoday:Proceedings, vol. 4, pp. 3926-3931, 2017.
[23] S. K. Das, S. U. S. Choi and H. E. Patel, “Heat Transfer in Nanofluids—A Review”, Heat Transfer Engineering, vol. 27, pp. 3-19, 2007.
[24] A. Einstein“A new determination of molecular dimensions”, Ann. Phys, vol.19,pp. 289-306, 1906.
[25] S. Bobbo, L. Fedele, A. Benetti, L. Colla, M. Fabrizio, C. Pagura and S. Barison, “Viscosity of water based SWCNH and TiO2 nanofluids”, Experimental Thermal and Fluid Science, vol. 36, pp. 65-71, 2012.
[26] G. K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles”, Journal of Fluid Mechanics, vol. 83, pp. 97-117, 1977.
[27] V. VAND, “Theory of Viscosity of Concentrated Suspensions”, Nature, vol. 155 , pp. 364-365, 1945.
[28] I. M. Krieger and T. Dougherty, “A mechanism for non-newtonian flow in suspensions of rigid spheres”, Trans Soc Rheol, vol. 3, pp. 137-152, 1959.
[29] S.S. GUO, Z.Y. LUO, T. WANG, J.F. ZHAO and K.F CEN, “Viscosity of Monodisperse Silica Nanofluids”, Bulletin of the Chinese Ceramic Society, vol. 25 , pp. 52-55, 2006
[30] T. Kitano, T. Kataoka and T. Shirota, “An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers”, Rheologica Acta, vol. 20 , pp. 207-209, 1981.
[31] R.M.Sarviya and V. Fuskele“Review on Thermal Conductivity of Nanofluids”, Materialstoday:Proceedings, vol. 4 , pp 4022-4031, 2017.
[32] J. C. Maxwell, “A Treatise on Electricity and Magnetism”, second ed (Oxford University Press), pp.435-441, 1904.
[33] V.D. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen”, Ann. Phys, vol. 416, pp. 636-664, 1935
[34] R. L. Hamilton and O. Crosser, “Thermal conductivity of heterogeneous two component systems”, I&EC Fundamentals, vol. 3, pp. 187-191, 1962.
[35]E.V. Timofeeva, A.N. Gavrilov, J.M. Mccloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina and J.V. Selinger, “Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory”, Phys. Rev. E, vol.76,2007.
[36] D. H. Cho, J. S. Kim, S. H. Kwon, C. Lee and Y. Z. Lee, “Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water”, Wear, vol. 302, pp. 981-986, 2013.
[37] M.S. Charoo and M.Hanief, “Improving the tribological characteristics of a lubricating oil by nano sized additives”, Materialstoday:Proceedings, 2020.
[38] 黃耀輝,“添加奈米氮化硼與奈米銅/鈦顆粒之潤滑油磨潤性能分析”,碩士論文,崑山科技大學,2006年。
[39] 莊毓璟,汽車原理上冊,大中國圖書,1981年。
[40] 行政院環保署,機車燃料消耗量試驗方法,2017年。
[41] 行政院環保署,機車廢氣排放污染測試方法,2019年。
[42] 行政院環保署,機車噪音量試驗法,2016年。
[43] Y. Kimura, T. Wakabayashi, K. Okada, T. Wada and H. Nishikawa, “Boron nitride as a lubricant additive”, Wear, vol. 232, pp. 199-206, 1999.
[44] Q. Wan, Y. Jin, P. Sun and Y. Ding, “Tribological Behaviour of a Lubricant Oil Containing Boron Nitride Nanoparticle”, Procedia Engineering, vol. 102, pp. 1038-1045, 2015.
[45] ASTM G99-95a, Standard test method for wear testing with a pin-on-disk apparatus, 2000.
[46] I. W. Osho, E. C. Okonkwo, D.Kavaz and S. Abbasoglu,” An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids”, Powder Technology, vol. 363, pp. 699-716, 2020.
[47] Y. F. Lue, Y. C. Hsu and T. P. Teng, “Prformance evaluation on vacuum pumps using nanolubricants”, Journal of Mechanical Science and Technolog, vol. 30, pp. 4275-4283, 2016.

無法下載圖示 電子全文延後公開
2025/08/01
QR CODE