研究生: |
戴彩雲 TAI TSAI YUN |
---|---|
論文名稱: |
血青素模型錯合物的研究:N,N-雙(苯咪唑-2-甲基)胺之二價銅混合配子錯合物的合成、結構及鍵結性質研究 |
指導教授: |
蘇展政
Su, Chan-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
畢業學年度: | 87 |
語文別: | 中文 |
中文關鍵詞: | 血青素 、模型錯合物 、高斯交疊解析 |
英文關鍵詞: | hemocyanine |
論文種類: | 學術論文 |
相關次數: | 點閱:140 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以雙(甲基啶)胺(dipica)及N,N-雙(1-甲基苯咪-2-甲基)甲基胺(CH3bimmaCH3)為主要配子,合成了下列錯合物:[Cu(dipica)(acac)](ClO4)(1)、[Cu(CH3bimmaCH3)(acac)](Et3NH)-(H2O)(ClO4)2(2)、[Cu(CH3bimmaCH3)(CH3CN)](ClO4)2(3)及[Cu(CH3bimmaCH3)(phen)](ClO4)2(4),其中acac為2,4-戊二酮、phen為1,10-二氮雜菲。利用元素分析、紅外光光譜、紫外光-可見光吸收光譜,電子順磁共振光譜及X-光單晶結構解析等方法,完成錯合物的結構鑑定及鍵結性質之探討。
目前已有X-光單晶結構解析的錯合物有:
1. [Cu(dipica)(acac)](ClO4)(1)
屬於三斜晶系(triclinic),空間群為PT,晶格常數a = 7.2374(2) A, b = 11.3015(2) A, c = 13.5843(2) A, = 65.702(1)°, = 79.625(1)°, = 82.243(1)°, 每單位晶格內含有2個分子(Z = 2),精算值R = 0.0376, Rw = 0.0377。
2. [Cu(CH3bimmaCH3)(acac)](Et3NH)(H2O)(ClO4)2(2)
屬於三斜晶系(triclinic),空間群為PT,晶格常數a = 12.1122(12) A, b = 12.9011(12) A, c = 14.7641(14) A, = 64.476(2)°, = 67.479(2)°, = 75.567(2)°,每單位晶格內含有2個分子(Z = 2),精算值R = 0.0813, Rw = 0.2084。
3. [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2(3)
屬於單斜晶系(monoclinic),空間群為P21/c,晶格常數a = 11.243(3) A, b = 12.1801(21) A, c = 19.099(3) A, = 104.119(22)°, 每單位晶格內含有4個分子(Z = 4),精算值R = 0.057, Rw = 0.053。
由可見光光譜的高斯交疊解析結果,本研究錯合物的d軌域排列順序,依結構不同,可分為下列三種:
(a) 錯合物(1)和(2):
dxy >> dz2 > dx2-y2 > dyz > dxz
(b) 錯合物(3):
dx2-y2 >> dxy > dxz , dyz > dz2
(c) 錯合物(4):
dx2-y2 >> dz2 > dxy > dxz , dyz
綜合本研究的結果得知,在錯合物(1)和(2)中,dipica和CH3bimmaCH3為facial的鍵結模式,推測是acac為-donor性質的配子所造成。因此,配子的鍵結模式與錯合物中其他配子的性質有極大的關聯。
Four mixed ligand copper (II) complexes, [Cu(dipica)(acac)](ClO4)(1), [Cu(CH3bimmaCH3)(acac)](Et3NH)(H2O)(ClO4)2(2), [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2(3) and [Cu(CH3bimmaCH3)(phen)]-(ClO4)2(4), where dipica = dipicolylamine, CH3bimmaCH3 = N,N-bis(1-methylbenzimidazol-2-ylmethyl)methylamine, acac = acetylacetonate, phen = 1,10-phenanthroline, have been synthesized and characterized by elemental analyses, infrared, electronic, and epr spectroscopic measurements.
By single-crystal X-ray diffraction method, the crystal and molecular structures of [Cu(dipica)(acac)](ClO4)(1), [Cu(CH3bimmaCH3)(acac)]-(Et3NH)(H2O)(ClO4)2(2) and [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2(3) have been determined. The crystal data of these complexes are described below:
(a) [Cu(dipica)(acac)](ClO4)(1) crystallizes in the triclinic, space group PT with a = 7.2374(2) A, b = 11.3015(2) A, c = 13.5843(2) A, = 65.702(1)°, = 79.625(1)°, = 82.243(1)°, Z = 2, R = 0.0376 and Rw = 0.0377.
(b) [Cu(CH3bimmaCH3)(acac)](Et3NH)(H2O)(ClO4)2(2) crystallizes in the triclinic, space group PT with a = 12.1122(12) A, b = 12.9011(12) A, c = 14.7641(14) A, = 64.476(2)°, = 67.479(2)°, = 75.567(2)°, Z = 2, R = 0.0813 and Rw = 0.2084.
(c) [Cu(CH3bimmaCH3)(CH3CN)](ClO4)2 (3) crystallizes in the monoclinic, space group P21/c with a = 11.243(3) A, b = 12.1801(21) A, c = 19.099(3) A, = 104.119(22)°, Z = 4, R = 0.057 and Rw = 0.053.
The solution LF spectra of these complexes were deconvoluted into Gaussian component bands. The results were employed to interpret the electronic and bonding properties of the copper (II) complexes. The sequences of d orbitals were assigned as following:
(a) (1) and (2):
dxy >> dz2 > dx2-y2 > dyz > dxz
(b) (3):
dx2-y2 >> dxy > dxz , dyz > dz2
(c) (4):
dx2-y2 >> dz2 > dxy > dxz , dyz
In conclusion, the tridentate ligands, dipica and CH3bimmaCH3, tend to bind to copper (II) with a facial configuration when the other binding ligand is acac. The configurations of the tridentate ligands are dependent on the coordination capabilities of other ligands presented in the complexes.
1. (a) Kitajima, N.; Moro-oka, Y. Chem. Rev., 1994, 94, 737.; (b) Solomon, E. I.; Hemming, B. L.; Root, D. E. in Bioinorganic Chemistry of Copper, Karlin, K. D.; Tyeklar, Z. Eds., Chapman & Hall, New York, 1993, pp3-20; (c) Solomon, E. I. in Copper Proteins, Spiro, T. G. Ed., Wiley, New York, 1981, pp41-108.
2. Magnus, K. A.; Ton-That, H.; Carpenter, J. E. in Bioinorganic Chemistry of Copper, Karlin, K. D.; Tyeklar, Z. Eds., Chapman & Hall, New York, 1993, pp143-150.
3. (a) Dooley, D. M.; Scott, R. A.; Ellinhaus, J.; Solomon, E. I.; Gray, H. B. Proc. Natl. Acas. Sci. U. S. A., 1978, 75, 3019.; (b) Moss, T. H.; Gould, D. C.; Ehrenberg, A.; Loehr, J. S.; Mason, H. S. Biochemistry, 1973, 12, 2444.; (c) Solomon, E. I.; Dooley, D. M.; Wang, R. H.; Gray, H. B.; Cerdonio, M.; Mogno, F.; Romani, G. L. J. Am. Chem. Soc., 1976, 98, 1029.
4. Magnus, K. A.; Ton-That, H.; Carpenter, J. E. in Bioinorganic Chemistry of Copper, Karlin, K. D.; Tyeklar, Z. Eds., Chapman & Hall, New York, 1993, pp3-4.
5. (a) Kitajima, N.; Fujisawa, K.; Moro-oka, Y.; Toriumi, K. J. Am. Chem. Soc., 1989, 111, 8975. (b) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.;Hashimoto, S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc., 1992, 114, 1277.
6. Plalniandavar, M.; Pandiyan, T.; Lakshminarayanan, M.; Manohar, H. J. Chem. Soc. Dalton Trans., 1995, 455.
7. Nishida, Y.; Takahashi, K. J. Chem. Soc. Dalton Trans., 1998, 691.
8. Nakai, H. Bull. Chem. Soc. Jpn., 1980, 53, 1321.
9. Casella, L.; Carugo, O.; Gullotti, M.; Doldi, S.; Frassoni, M., Inorg. Chem.,1996 , 35,1101.
10. Su, C.-C.; Huang, G.-S.; Wang, S.-L.; Liao, F.-L.; Lin, K.-J., J. Coord. Chem., Accepted.
11. Su, C.-C.; Wu, S.-P.; Wu, C.-Y.; Chang, T.-Y. Polyhedron, 1995, 14, 267.
12. Sedov, A.; Dunaj-Jurco, M.; Kabesova, M.; Gazo, J.; Garaj, J. Inorg. Chim. Acta., 1982, 64, L257.
13. Escobar, C.; Wittke, O. Acta Cryst. C. 1983, 39, 1643.
14. Su, C.-C.; Lin, Y.-L.; Liu, S.-J.; Chang, T.-H. Wang, S.-L.; Liao, F.-L., Polyhedron 1993, 12, 2687.
15. Cotton, F. A.; Wood, J. S., Inorg. Chem., 1964, 3, 245.
16. Purcell, K. F.; Kotz, J. C., in Inorganic Chemistry, Saunders, W. B. Philadelphia, 1977.
17. Musker, W. K.; Huaasim, M. S., Inorg. Chem. Nucl. Chem., 1967, 3, 271.
18. Olsen, C. D.; Basu, G.; Belford, R. L., J. Coord. Chem., 1971, 1, 17.
19. Harrison, D. H.; Kebbedy, D.; Hathaway, B., J. Inorg. Nucl. Chem. Lett., 1981, 17, 87.
20. Hathaway, B. J.; Billing, D. E., Coord. Chem. Rev., 1970, 5, 143.
21. Dahl, L. H.; as quoted by Robertson, I. and Truter, M. R., J. Chem. Soc. (A) 1967, 309.
22. Jose, P.; Ooi, S.; Fernando, Q., J. Inorg. Nucl. Chem., 1969, 31, 1971.
23. Berg, R. W.; Rasmussen, K., Spectrochimica Acta, 1974, 1881.
24. Saito, Y.; Takemoto, J.; Hutchinson, B.; Nakamoto, K., Inorg. Chem. 1970, 11, 2003.
25. Takemoto, J.; Hutchinson, B.; Nakamoto, K., J. Chem. Soc., Chem. Commun., 1971, 1007.
26. Wilde, R. E.; Srinivasan, T. K.; J. Inorg. Nucl. Chem. 1974, 36, 323.
27. Aggarual, R. C.; Singh, R. P., Inorg. Chem., 1985, 20, 2794.
28. Belford, R. L.; Calrin, M.; Belford, G., J. Chem. Phys., 1957, 26, 1165.
29. Wang, S. L.; Wang, P. C.; Nieh, Y. P., J. Appl. Cryst. 1990, 23, 520.