簡易檢索 / 詳目顯示

研究生: 曾彥偉
論文名稱: 以鐿-光纖雷射為光源的高重複率光學參數放大器
High repetition rate optical parametric amplification based on a single Yb:fiber laser
指導教授: 劉祥麟
Liu, Hsiang-Lin
朱士維
Chu, Shi-Wei
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 29
中文關鍵詞: 光學參數放大波長可調式雷射週期性極化鈮酸鋰非線性光學超連續光源
英文關鍵詞: optical parametric amplification (OPA), wavelength-tunable source, periodically poled lithium niobate (PPLN), nonlinear optics, supercontinuum generation (SCG)
論文種類: 學術論文
相關次數: 點閱:214下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光譜學以及顯微術的應用中,可調整波長的超快雷射是一項非常重要的工具。在這項研究中,我們利用在一塊週期性極化晶體中進行的光學參數放大技術(optical parametric amplification, OPA),完成了一套從700奈米到1900奈米的可調式雷射光源。光學參數放大需要一個泵浦光源(pump)跟一個種子光源(seed)。在這套系統中,泵浦光源是來自於倍頻過後的鐿-光纖雷射,而經過倍頻晶體後剩下的未經倍頻雷射則被回收導入一條光子晶體光纖(photonic crystal fiber, PCF)中,用以產生超連續光源(supercontinuum),作為光學參數放大中所需的種子光源。與傳統的光學參數放大相較,這套系統避免了泵浦光源與種子光源之間的時序劇跳現象(timing jitter)。再加上我們採用了雙種子機制,以及高效率晶體(週期性極化鈮酸鋰),這些就是我們的系統有高效率的原因。在每個脈衝只有10奈焦耳的情況下,我們得到了超過百分之四十的轉換效率。再搭配50 MHz的高重複率,使得這套系統可以做為一個非常適合生物醫學及顯微術應用的理想光源。除此之外,值得一提的是,在這麼高的重覆率之下,這是目前已知的單程光學參數放大中,最高的轉換效率。

    Tunable ultrafast light sources are important for various spectroscopic and microscopic applications. We have demonstrated a 700 nm – 1900 nm wavelength-tunable light source based on a single-pass optical parametric amplification (OPA) in a multi-period magnesium oxide doped periodically poled lithium niobate (MgO:PPLN) crystal. The OPA pump was a frequency-doubled ultrafast ytterbium-doped fiber laser and the residual laser power after frequency doubling was recycled to generate a supercontinuum seeding source in a photonic crystal fiber. Compared with conventional OPAs, this system is free from timing jitter between the pump and the seed. Combined with the double seed scheme and the high efficient crystal, PPLN, these are responsible for the high conversion efficiency. Over 40% conversion efficiency was obtained with 10 nJ pump energy. Combined with a 50 MHz repetition rate, this versatile source is ideal for biomedical and spectroscopic applications. Moreover, this is the highest single-pass OPA efficiency at such high repetition rate.

    Chinese abstract............................................. I English abstract.................................... II Content............................................ III Figure content...................................... IV Chapter 1 Introduction............................... 1 Chapter 2 Principle ................................. 4 2.1 Optical parametric amplification (OPA)......... 4 2.2 Supercontinuum generation (SCG)................ 7 2.3 Second harmonic generation (SHG)............... 8 2.4 Quasi phase matching (QPM).................... 10 Chapter 3 setup..................................... 13 3.1 Introduction to elements in setup............. 13 3.1-1 Yb:fiber fiber laser...................... 13 3.1-2 LBO....................................... 13 3.1-3 PPLN...................................... 14 3.2 Experimental setup............................ 15 Chapter 4 Result and discussion..................... 18 4.1 Supercontinuum................................ 18 4.2 OPA wavelength tuning range................... 19 4.3 Pulse width................................... 20 4.4 Conversion efficiency......................... 21 4.5 Power dependency.............................. 23 Chapter 5 Conclusion................................ 25 Reference........................................... 26

    1. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, "Ultrasensitive ultraviolet- visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase," Rev. Sci. Instrum. 79, 013107 (2008).
    2. P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, "Dynamical ultrafast alloptical switching of planar GaAs/AIAs photonic microcavities," Appl. Phys. Lett. 91, 111103 (2007).
    3. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D-Appl. Phys. 37, 3296-3303 (2004).
    4. N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
    5. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
    6. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    7. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    8. T. A. Birks, W. J. Wadsworth, and P. S. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    9. W. S. Pelouch, P. E. Powers, and C. L. Tang, "Ti-sapphire-pumped, high-repetition- rate femtosecond optical parametric oscillator," Opt. Lett. 17, 1070-1072 (1992).
    10. G. Cerullo, and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
    11. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
    12. F. Tavella, A. Marcinkevicius, and F. Krausz, "90 mJ parametric chirped pulse amplification of 10 fs pulses," Opt. Express 14, 12822-12827 (2006).
    13. S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe, "1.5 mJ, 6.4 fs parametric chirped-pulse amplification system at 1 kHz," Opt. Lett. 32, 2487-2489 (2007).
    14. V. Petrov, F. Noack, P. Tzankov, M. Ghotbi, M. Ebrahim-Zadeh, I. Nikolov, and I. Bucharov, "High-power femtosecond optical parametric amplification at 1 kHz in BiB3O6 pumped at 800 nm," Opt. Express 15, 556-563 (2007).
    15. Q. Fu, G. Mak, and H. M. Vandriel, "High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76 MHz Ti-sapphire laser," Opt. Lett. 17, 1006-1008 (1992).
    16. J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, "Characteristics of a noncritically phasematched Ti-sapphire pumped femtosecond optical parametric oscillator," Opt. Commun. 104, 419-430 (1994).
    17. S. W. Chu, T. M. Liu, and C. K. Sun, "Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti : sapphire laser," Opt. Express 11, 933-938 (2003).
    18. T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tunnermann, "High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier," Opt. Express 14, 4765-4773 (2006).
    19. A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, "Megahertz optical parametric amplifier pumped by a femtosecond oscillator," Opt. Lett. 31, 125-127 (2006).
    20. B. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, "Millijoule-level phase-stabilized few-optical-cycle infrared parametric source," Opt. Lett. 32, 2957-2959 (2007).
    21. R. W. Boyd, "Nonlinear Optics," Academic Press (2008)
    22. Alfano, R. R., and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four- photon coupling in glass," Phys. Rev. Lett. 24, 584–587 (1970).
    23. W. F. Krupke, "Ytterbium solid-state lasers - The first decade," IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
    24. F. Roser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30, 2754-2756 (2005).
    25. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
    26. O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B-Lasers Opt. 91, 343-348 (2008).

    下載圖示
    QR CODE