研究生: |
黃滄海 Tsang-Hai Huang |
---|---|
論文名稱: |
不同強度的耐力性游泳運動對大鼠骨骼發展的影響 The effects of different endurance swimming training intensities on bone development in rats |
指導教授: |
謝伸裕
Hsieh, Shen-Yu 楊榮森 Yang, Rong-Seng |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 耐力運動 、游泳 、機械性負荷 、骨骼發展 |
英文關鍵詞: | endurance exercise, swimming, mechanical loading, bone development |
論文種類: | 學術論文 |
相關次數: | 點閱:314 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
正常而良好的骨骼發展,機械性負荷是一個重要的因子,而負重式的運動較能讓骨骼獲得所需的機械性負荷。游泳運動的機械性負荷,主要來自於肌肉的牽張。本研究的目的旨在探討游泳強度不同是否會對骨骼系統產生不同強度的肌肉牽張,進而對骨骼發展有不同的影響。本研究以30隻Wistar雄性大鼠為樣本,以隨機分派的方式分成三組:SWIM 1組(高強度),SWIM 2組(中強度)及控制組;運動訓練期間,逐週增加運動強度,SWIM 1組與SWIM 2組最終的強度分別為游泳時尾部懸掛4%及2%體重的重物,並於訓練結束後分析各項骨骼生長的變項。實驗結束時,兩組游泳運動組體重均顯著低於控制組(400.2±35.5, 394.8±32.1 < 473.1±31.6公克),伸趾長肌的檸檬酸合成酉每活性上則較控制組高(6.5±2.4, 6.5±1.5 > 4.9±1.3 mmole/g/min)。在血液分析方面,各項與骨代謝有關的指標(全鹼性磷酸酉每活性總量、第一型前膠原羧基端前胜月太及第一型膠原羧基端交鍵的末端胜月太)均無組間差異,但在骨骼代謝較旺盛的骨骨后區海綿骨則顯示,SWIM 1組(42±5%)及SWIM 2組(42±4%)的骨量比率顯著高於控制組(36±3%)。游泳運動組的大鼠在骨質密度(BMD)及脛骨或股骨部份區域的骨質含量(BMC)則較低於控制組,在骨骼外形上也顯著的較控制組較短且較細。骨骼材料力學的測驗亦顯示控制組脛骨及股骨的最大壓斷負荷(ML)及斷裂負荷(FL)均顯著高於游泳組,意指著控制組的骨骼強度較佳。然而在彎曲應力計算後,SWIM 2(208.6±24.8 Nt/mm2)的脛骨彎曲應力顯著高於控制組(150.2±27.0 Nt/mm2),而股骨的彎曲應力則沒有顯著差異。雖然有部份資料未達統計上的差異,仍可看出SWIM 1組的大鼠有較優於SWIM 2組的骨骼外形、骨密度及骨骼強度的趨勢。結論:(1)游泳運動造成較輕的體重,可能是造成BMD, BMC, 骨骼外形及材質等絕對值較差的原因;(2)耐力性的游泳運動對海綿骨骨量有促進作用,而且海綿骨骨量似有隨訓練強度增加的趨勢。
Mechanical loading is an important factor for normal bone growth, and weight-bearing physical activities are necessary for the skeletal system to achieve sufficient mechanical loading. In swimming, the skeletal system receives its main mechanical loading from muscle contraction. It’s unknown whether different swimming intensities produce different muscle tension on the bone. The purpose of this study was to investigate the effects of different endurance swimming training intensities on skeletal development. Thirty male Wistar rats were randomly assigned into three groups: SWIM 1 group (high intensity), SWIM 2 group (moderate intensity) and a control group. The exercise intensity was increased weekly during the training period. At the end of the training period, animals of the SWIM 1 and SWIM 2 groups swam with a lead weight attached to the tail, which represented 4% and 2% of the animals’ body weight respectively. After 8 weeks of training, the swimming groups showed a significantly lower body weight than the control group (400.2±35.5, 394.8±32.1 <473.1±31.6g) and had higher citrate synthase activity in the extensor digitorum longus (EDL) (6.5±2.4, 6.5±1.5 > 4.9±1.3 mmole/g/min). There was no significant difference in serum bone markers, including total alkaline phosphatase (ALP), carboxyterminal propeptide of type I procollagen (PICP) and carboxyterminal cross-linked telopeptide of type I collagen (ICTP). However, the bone volume ratio of the epiphysis of the SWIM 1 (42±5%) and SWIM 2 (42±4%) groups was higher than the control group (36±3%)(p < .05). The swim groups showed a significantly lower bone mineral density (BMD) and bone mineral content (BMC) in portions of the tibia and femur. For the bone shape, the swimming groups showed a shorter and more slender tibia and femur. Both swimming groups showed a weaker material property with a lower bending maximal load (ML) on the femur and a lower fracture load (FL) on the femur and tibia. However, the bending stress of the SWIM 2 group (208.6±24.8 Nt/mm2) showed a significantly better mechanical property on the tibia as compared to the control group (150.2±27.0 Nt/mm2). Although there was no significant difference, SWIM 1 showed higher values in bone shape parameters, BMD and material strength. Conclusions: 1) Swimming training causes lower body weight, and seems to negatively affect the absolute bone development (BMD, BMC, bone shape and bone mechanical properties); 2) A higher training intensity might lead to higher muscle tension which could contribute to better bone development.
一、中文部份
梁金銅。(1990)。骨骼肌肉系統之外傷和病變。臺北市: 藝軒圖書出版社。
楊榮森 編譯。(1997)。骨質疏鬆症: 病因、診斷、治療。臺北市: 合記出版社。
沈勇全、彭世明、曾建榮和簡國雄 譯。(1999)。材料力學。台北市: 高立圖書有限公司。
二、西文部份
Aldridge, J. (1993). Skeletal growth and development. In Martin, L. (Ed.). Coaching Children in Sport. (pp.51 - 63). London, England: E & FESPON.
The American Society for Bone and Mineral Research (1993). Primer on the metabolic bone diseases and disorders of mineral metabolism. New York, U S A: The Raven Press.
Arnett, T. R., & Dempster, D. W. (1986). Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology, 119(1), 119-124.
Bendavid, E. J., Shane, J., Barrett-Connor, E. Factors associated with bone mineral density in middle-aged men. Journal of Bone Mineral Research, 11(8), 1185-1190.
Bigard, A. X., Brunet, A., Guezennec, C. Y., Monod, H. (1991a). Effects of chronic hypoxia and endurance training on muscle capillarity in rats. Pflugers Archiv: European Journal of Physiology, 419(3-4):225-229.
Bigard, A. X., Brunet, A., Guezennec, C. Y., Monod, H. (1991b). Skeletal muscle changes after endurance training at high altitude. Journal of Applied Physiology, 71(6), 2114-2121.
Brahm, H., Strom, H., Piehl-Aulin, K., Mallmin, H., Ljunghall, S. (1997). Bone metabolism in endurance trained athletes: a comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcified Tissue International, 61(6), 448-454.
Branca, F. (1999). Physical activity, diet and skeletal health. Public Health Nutrition, 2(3A), 391-396.
Brooks, G. A., Fahey, T. D., & White, T. P. (1996). Exercise physiology: Human Bioenergetics and Its Applications. Mayfield Publishing Co., California, U. S. A.
Bourrin, S., Ghaemmaghami, F., Vico, L., Chappard, D., Gharib, C., & Alexandre, C. (1992). Effect of a five-week swimming program on rat bone: a histomorphometric study. Calcified Tissue International, 51(2), 137-142.
Bourrin, S., Genty, C., Palle, S., Gharib, C., & Alexandre, C. (1994). Adverse effects of strenuous exercise: a densitometric and histomorphometric study in the rat. Journal of Applied Physiology, 76(5), 1999 - 2005.
Bourrin, S., Palle, S., Pupier, R., Vico, L., & Alexandre, C. (1995). Effects of physical training on bone adaptation in three zones of the rat tibia. Journal of Bone and Mineral Research, 10(11), 1745-1752.
Chang, F. L., Huang, T. H., Hsieh, S. S., Yang, R. S., & Lin, C. C. (2001). The effects of different endurance training intensity on systematic and peripheral citrate synthase activity. Medicine and Science in Sports and Exercise, 33(5), S295.
Courteix, D., Lespessailles, E., Peres, S. L., Obert, P., Germain, P., & Benhamou, C. L. (1998). Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporosis International, 8(2), 152-158.
Courteix, D., Lespessailles, E., Obert, P., & Benhamou, C. L. (1999). Skull bone mass deficit in prepubertal highly-trained gymnast girls. International Journal of Sports Medicine, 20(5), 328-333.
Dallas, S. L., Zaman, G., Pead, M. J., & Lanyon, L. E. (1993). Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. Journal of Bone and Mineral Research, 8(3), 251-259.
Dodds, R. A., Ali, N., Pead, M. J., & Lanyon, L. E. (1993). Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. Journal of Bone and Mineral Research, 8(3), 261-267.
Emslander, H. C., Sinaki, M., Muhs, J. M., Chao, E. Y., Wahner, H. W., Bryant, S. C., Riggs, B. L., & Eastell, R. (1998). Bone mass and muscle strength in female college athletes (runners and swimmers). Mayo Clinic Proceedings, 73(12), 1151-1160.
Gobatto, C. A., dos Santos, L. A., Sibuya, C. Y., de Azeveda, J. R. M., de M. A. R., & Kokubum, E. (2001). Maximal lactate steady state in rats: effect of physical training. Medicine and Science in Sports and Exercise, 33 (5), S26.
Grimston, S. K., Willows, N. D., Hanley, D. A. (1993). Mechanical loading regime and its relationship to bone mineral density in children. Medicine and Science in Sports and Exercise, 25(11), 1203-1210.
Grossman, E. J., Grindeland, R. E., Roy, R. R., Talmadge, R. J., Evans, J., Edgerton, V. R. (1997). Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast muscles of hypophysectomized rats. Journal of Applied Physiology, 83(5), 1522-1530.
Hasanoglu, A., Bideci, A., Cinaz, P., Tumer, L., & Unal, S. (2000). Bone mineral density in childhood obesity. Journal of pediatric endocrinology and metabolism, 13(3), 307-311.
Hsieh, H. J., Li, N. Q., & Frangos, J. A. (1991). Shear stress increase endothelial platelet-derived growth factor mRNA levels. American Journal of Physiology, 260(2 Pt 2), H642-H646.
Hock, J. M., Centrella, M., & Canalis, E. (1988). Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology, 122(1), 254-260.
Holy, X., & Zerath, E. (2000). Bone mass increases in less than 4 wk of voluntary exercising in growing rats. Medicine and Science in Sports and Exercise, 32(9), 1562-1569.
Iwamoto J, Yeh JK, & Aloia JF. (2000). Effect of deconditioning on cortical and cancellous bone growth in the exercise trained young rats. Journal of Bone and Mineral Research, 15(9), 1842-1849.
Jones, D. B., Nolte, H., Scholubbers, J-G, Turner, E., & Veltel, D. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials, 12(2), 101-110.
Klausen, T., Breum, L., Sorensen, H. A., Schifter, S., & Sonne, B. (1993). Plasma levels of parathyroid hormone, vitamin-D, calcitonin, and calcium in association with endurance exercise. Calcified Tissue International, 52(3), 205-208.
Klesges, R. C., Ward, K. D., Shelton, M. L., Applegate, W. B., Cantler, E. D., Palmieri, G. M. A., Harmon, K., Davis, J. (1996). Changes in bone mineral content in male athletes: mechanisms of action and intervention effects. The Journal of the American Medical Association, 276(3), 226-230.
Kreipe, R. E. (1995). Bone mineral density in adolescents. Pediatric Annals, 24(6), 308-315.
Kristofferson, A., Hultdin, J., Holmlund, I., Thorsen, K., & Lorentzon, R. (1995). Effects of short-term maximal work on plasma calcium, parathyroid hormone, osteocalcin and biochemical markers of collagen metabolism. International Journal of Sports Medicine, 16(3), 145-149.
Langberg, H., Skovgaard, D., Asp, S., & Kjaer, M. (2000). Time pattern of exercise-induced changes in type I collagen turnover after prolonged endurance exercise in humans. Calcified Tissue International, 67(1), 41-44.
Langberg, H., Skovgaard, D., Petersen, L. J., Bulow, J., & Kjaer, M. (1999). Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. The Journal of Physiology, 521(1), 299-306.
Lanyon, L. E. (1992). Control of bone architecture by functional loading. Journal of Bone and Mineral Research, 7(Suppl. 2), S369-S375.
Maxwell, L. C., Enwemeka, C. S., Fernandes, G. (1992). Effects of exercise and food restriction on rat skeletal muscles. Tissue Cell, 24(4), 491-498.
Matuda, J. J., Zernicke, R. F., Vailas, A. C., Pedrini, V. A., Pedrini-mille, A., Maynard, J. A. (1986). Structure and mechanical adaptation of immature bone to strenuous exercise. Journal of Applied Physiology, 60(6), 2028-2034.
McCarthy, T. L., Centrella, M., Raisz, L. G., & Canalis, E. (1991). Prostagalandin E2 stimulated insulin-like growth factor I synthesis in osteoblast-enriched cultures from fetal rat bone. Endocrinology, 128(6), 2895-2900.
Nyska, M., Nyska, A., Swissa-Sivan, A., & Samueloff, S. (1995). Histomorphometry of long bone growth plate in swimming rats. International Journal of Experimental Pathology, 76(4), 241-245.
Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., & Recker, R. R. (1987). Bone histomorphometry: standardization of nomenclature, symbols and units. Journal of Bone and Mineral Research, 2, 595-610.
Price, J. S., Jackson, B., Eastell, R., Wilson, A. M., Russell, R. G., Lanyon, L. E., & Goodship, A. E. (1995). The response of the skeleton to physical training: a biochemical study in horses. Bone, 17(3), 221-227.
Rawlinson, S. C., Mohan, S., Baylink, D. J., & Lanyon, L. E. (1993). Exogenous prostacyclin, but not prostaglandin E2, produces similar response in both G6PD activity and RNA production as mechanical loading, and increases IGF-II release, in adult cancellous bone in culture. Calcified Tissue International, 53(5), 324-329.
Reich, K. M., & Frangos, J. A. (1991). Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. American Journal of Physiology, 261(3 Pt1), C428-C432.
Reich, K. M., & Frangos, J. A. (1993). Protein kinase C mediated flow-induced prostaglandin E2 production in osteoblast. Calcified Tissue International, 52(1), 243-249.
Rico, H., Aznar, L., Hernandez, E. R., Seco, C., Sanchez-Atrio, A., Villa, L. F., & Gervas, J. J. (1999). Effects of potassium bicarbonate supplementation on axial and peripheral bone mass in rats on strenuous treadmill training exercise. Calcified Tissue International, 65, 242-245.
Risteli, J., Elomaa, I., Niemi, S., Novamo, A., & Risteli, L. (1993). Radioimmunoassay for the pyridinoline cross-linked carboxyterminal telopeptide of type I collagen: A new serum marker of bone resorption. Clinical Chemistry, 39(4), 635-640.
Rudberg, A., Magnusson, P., Larsson, L., & Joborn, H. (2000). Serum isoforms of bone alkaline phosphatase increase during physical exercise in women. Calcified Tissue International,66(5):342-327.
Sanborn, C. F., Albrecht, B. H., Wagner, W. W. (1987). Athletic amenorrhea: lack of association with body fat. Medicine and Science in Sports and Exercise, 19(3), 207-212.
Shepherd, D., and Garland, P. B. (1969). Citrate synthase from rat liver. Methods in Enzymology, 13, 11-16.
Snyder, A., Zierath, J. R., Hawley, J. A., Sleeper, M. D., & Craig, B. W. (1992). The effects of exercise mode, swimming vs. running, upon bone growth in the rapidly growing female rat. Mechanisms of Aging and Development, 66(1), 59-69.
Swissa-Sivan, A., Simkin, A., Leichter, I., Nyska, A., Nyska, M., Statter, M., Bivas, A., Menczel, J., & Samueloff, S. (1989). Effect of swimming on bone growth and development in young rats. Bone and Mineral, 7(2), 91-105.
Swissa-Sivan, A., Azoury, R., Statter, M., Leichter, I., Nyska, A., Nyska, M., Menczel, J., & Samueloff, S. (1990). The effect of swimming on bone modeling and composition in young adult rats. Calcified Tissue International, 47(3), 173-177.
Taaffe, D. R., Marcus, R. (1999). Regional and total body bone mineral density in elite collegiate male swimmers. Journal of Sports Medicine and Physical Fitness, 39(2), 154-159.
Vandenburgh, H. H. (1992). Mechanical forces and their second messengers in stimulating cell growth in vitro. American Journal of Physiology, 262(3 Pt 2), R350-R355.
Walsh, W. R., & Guzelsu, N. (1993). Ion concentration effects on bone streaming potentials and zeta potentials. Biomaterials, 14(5), 331-336.
Watson, P. A. (1991). Function follows form: generation of intracellular signals by cell deformation. FASEB Journal, 5(7), 2013-2019.
Yang, R. S., Lin, T. K., Lin-Shiau, S. Y. (1993). Increased bone growth by local prostaglandin E2 in rats. Calcified Tissue International, 52(1), 57-61.
Yeager, K. K., Agostini, R., Nattiv, A., Drinkwater, B. (1993). The female athlete trial─disordered eating, amenorrhea, osteoporosis. Medicine and Science in Sports and Exercise, 25(7), 775-777.
Zonderland, M. L., Bär, P. R., Reijneveld, J. C., Spruijt, B. M., Keizer, H. A., and Glatz, J. F. C. (1999). Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat. European Journal of Applied Physiology, 79, 391-396.