簡易檢索 / 詳目顯示

研究生: 施宏達
論文名稱: 應用於 X 頻段之鎖相迴路與頻率合成器之設計與實現
Design and Implementation of Phase-Locked Loop and Frequency Synthesizer for X-band Applications
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 111
中文關鍵詞: X 頻段CMOS變壓器回授之壓控振盪器除頻器鎖相迴路頻率合成器
英文關鍵詞: X-band, CMOS, Transformer feedback VCO, Divider, Phase-locked loop, frequency synthesizer
論文種類: 學術論文
相關次數: 點閱:194下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊產業發展蓬勃,在講求高資料傳輸速率的時代,許多應用已經都被發展到高頻段上,然而在這些高頻段應用的通訊系統皆需要一個穩定且純淨的振盪源,因此,鎖相迴路扮演了一個關鍵的角色。本論文使用了TSMC CMOS 0.18-µm 製程實現可操作在 X 頻段上的鎖相迴路與頻率合成器。在這次設計的過程中,我們使用電流再利用技術與變壓器回授型態的壓控振盪器來達到節省功耗之效果。
    本論文依序實現了壓控振盪器、除頻器、鎖相迴路與頻率合成器,分別在第三章、第四章、第五章與第六章呈現。四個電路主要都是設計在 X 頻段上。第五章設計了一個操作在 X 頻段上的鎖相迴路,整體的功率消耗約為 38 mW,其相位雜訊為-94 dBc/Hz @ 1 MHz。在第六章整合了第三章、第四章與第五章實現出了一個低電壓且操作在 X 頻段上的頻率合成器,並且具有一組 2bits 的控制線,可切換三個頻道,其功率消耗為 36.76 mW。相位雜訊在 In-band 為-75 dBc/Hz @ 100 kHz 且在 out-band 為-120 dBc/Hz @ 10 MHz。

    With the rapid growth of communication system, the demand for high data-rate is required. Many applications have been developed to high frequency band for broad spectrum. However, the communication for applications in high band require source oscillator which are stable and pure. Therefore, phase-locked loop plays a critical role.
    In this thesis, a phase-locked loop and a frequency synthesizer in X-band are presented by using TSMC CMOS 0.18-µm process. This thesis implement a voltage controlled oscillator, divider, phase-locked loop and frequency synthesizer in chapter 3, chapter 4, chapter 5 and chapter 6, respectively. The four work main design in X-band. In chapter 5, a X-band phase-locked loop is presented, which power consumption is 38 mW and measured phase noise is -94 dBc/Hz at 1 MHz offset. The frequency synthesizer with a 2 bits control line is presented in chapter 6. The power consumption and the phase noise of the frequency synthesizer are 36.76 mW and -75 dBc/Hz at 100 KHz offset, respectively.

    第一章 緒論... 1 1.1 研究背景與動機... 1 1.2 論文架構... 1 第二章 鎖相迴路的基本觀念... 3 2.1 相位頻率偵測器... 3 2.2 充電泵... 8 2.3 迴路濾波器...14 2.4 除頻器...14 2.5 壓控振盪器...15 2.6 鎖相迴路分析...16 第三章 使用變壓器回授之低電壓壓控制振盪器設計...23 3.1 壓控振盪器簡介...23 3.2 相位雜訊定義...25 3.3 LC 振盪器設計重點....27 3.4 LC 振盪器分析...28 3.5 在 LC 壓控振盪器的被動元件...30 3.5.1 電感...30 3.5.2 變容器....33 3.6 使用變壓器回授之壓控震盪器設計....37 3.6.1 變壓器與變容器的模擬....37 3.6.2 變壓器回授壓控振盪器模擬結果...40 3.6.3 變壓器回授壓控振盪器量測結果...42 3.7 結果與討論 ...46 第四章 應用於頻率合成器之 7-12 GHZ 的除頻器設計與實現 ................................49 4.1 除頻器簡介...49 4.2 適用於高頻的除頻器之基本元件...50 4.2.1 注入鎖定除頻器...51 4.2.2 米勒除頻器...51 4.2.3 靜態除頻器...52 4.3 7-12 GHZ 多模除頻器設計...55 4.3.1 可除四的預除頻器...55 4.3.2 可除四或除五的除頻器...56 4.3.3 非同步四位元漣波計數器與數位控制邏輯...57 4.3.4 模擬結果...57 4.4 量測結果...60 4.5 結果與討論...62 第五章 應用於 X-BAND 鎖相迴路之設計與實現...65 5.1 簡介...65 5.2 架構與電路設計...66 5.2.1 使用變壓器回授之壓控振盪器與除頻器設計...67 5.2.2 相位頻率偵測器、充電泵與濾波器...68 5.2.3 鎖相迴路系統...70 5.3 模擬結果...71 5.3.1 變壓器回授之壓控振盪器...71 5.3.2 相位頻率偵測器與充電泵...74 5.3.3 除頻器...74 5.3.4 鎖相迴路系統模擬....76 5.4 應用於 X-BAND 鎖相迴路的量測結果...79 5.5 結果與討論...83 6.1 簡介...84 6.2 架構與電路設計...85 6.3 模擬結果...86 6.3.1 變壓器回授之壓控振盪器...86 6.3.2 相位頻率偵測器與充電泵....88 6.3.3 除頻器...89 6.3.4 鎖相迴路系統模擬...90 6.4 應用於 X-BAND 鎖相迴路的量測結果...94 6.5 結果與討論...98 第七章 結論...100 參考文獻...102 作者簡歷...109 學術成就...111

    [1] C. S Vaucher et al, “Silicon-Germanium ICs for Satellite Microwave Front-ends,” IEEE BCTM, September 2005, pp. 196-203.
    [2] Adrian Maxim, “A 10 GHz SiGe OC192 Frequency Synthesizer Using a Passive Feed-Forward Loop Filter and a Half Rate Oscillator” IEEE ESSCIRC, September 2004, pp. 363-366.
    [3] T. Copani et al, “A 12-GHz Silicon Bipolar Dual-Conversion Receiver for Digital Satellite Applications,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1278-1287, June 2005.
    [4] S. Kim, K. Lee, Y. Moon, D. K. Jeong, Y. Choi and H. K. Lim, “A 960-Mb/s/pin
    interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 691-700, May 1997.
    [5] W. RHEE,“Design of high performance CMOS charge pump in phase locked loop,” Proc. IEEE Int. Symp. Circuits and Systems, 1999, vol. 1, pp. 545-548.
    [6] G. Wegmann, E. A. Vittoz, and F. Rahali, “Charge injection in analog MOS switches,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 1091-1097, Dec. 1987.
    [7] B.J Sheu and Chenming Hu, “Switch-induced error voltage on a switched capacitor,” IEEE J. Solid-State Circuits, vol. sc-19 no. 6, pp. 519-525, Aug. 1984.
    [8] Mark Van Paemel, “Analysis of a charge-pump PLL: A new model,” IEEE Transactions on Communications, vol. 42, pp. 2490-2498, July 1994.
    [9] F. M. Gardner, “Charge-Pump Phase-Lock Loops,“ IEEE Trans. on Communications, vol. 28, pp. 1849-1858, November 1980.
    [10] Application Note 1001, National Semiconductor Co., July 2001.
    [11] 劉深淵,楊清淵, 鎖相迴路, 滄海書局,2006. 103
    [12] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
    [13] 于宗仁, “應用在 HDTV/ITV 寬頻帶射頻調諧器及 900-MHz/2.4-GHz 無線通訊之頻率合成器的設計,” 國立成功大學電機工程研究所碩士論文, 民國八十六年。
    [14] H. G. Booker, Energy in Electromagnetism, London, New York: Peter Peregrinus, 1982.
    [15] C. Patrick Yue, and S. Simon Wang, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, Vol. 33, No.5, pp. 743-752, May 1998.
    [16] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [17] J. Craninckx and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol.32, pp. 736-744,
    May 1997.
    [18] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109, June 1974.
    [19] C. H. Wu, “CMOS miniature 3D inductors and low noise amplifier,” MS Thesis, Dpt. of Electrical Engineering, National Taiwan University, June 2001.
    [20] C.-H. Wu, C.-Y Kuo, and S.-I. Liu, “Selective Metal Parallel Shunting Inductor and Its VCO Application,” in Proc. of Symp. on VLSI Circuits, June 2003, pp. 37-40.
    [21] KaChun Kwok and Howard C. Luong, “Ultra-low-voltage high-performance cmos vcos using transformer feedback,” IEEE Journal of Solid-state Circuits, vol. 40,no. 3, March,
    2005.
    [22] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” Solid-State Circuits, IEEE Journal of, vol. 35, pp. 905-910, 2000.
    [23] C. Patrick Yue et al., “Analysis and optimization of accumulation-mode varactor for RF 104 ICs” VLSI Circuits Symp. Dig. of Tech. Papers, Honolulu, June 1998.
    [24] A. R. Kral, “A 2.4GHz Frequency Synthesizer in 0.6um CMOS,” MS Thesis, Dpt. of Electrical Engineering, University of California Los Angeles, March 1998.
    [25] N. Seller, et al., “A 10GHz distributed voltage controlled oscillator for WLAN application in a VLSI 65nm CMOS process”, IEEE RFIC Symposium, Honolulu, 3-5 June 2007, pp. 115–118.
    [26] MengLing Qin; , “10GHz Low-Noise CMOS VCO for Radar Receiver,” Microwave Conference, 2008 China-Japan Joint, Shanghai, 10-12 Sept. 2008, pp.461-463.
    [27] W. D. Cock and M. Steyaert, “A CMOS 10GHz voltage controlled LC-oscillator with integrated high-Q inductor,” in Proc. European Solid-State Circuits Conf. (ESSCIRC),
    2001, pp. 498-501.
    [28] Wanghui Zou; Xiaofei Chen; Jianming Lei; Kui Dai; Xuecheng Zou; , “An area-efficient 5GHz/10GHz dual-mode VCO with coupled helical inductors in 0.13-UM CMOS
    technology,” Electrical and Computer Engineering (CCECE), 8-11 May 2011, pp. 512-515.
    [29] H.-D. Wohlmuth and D. Kehrer, “A 15 GHz 256/257 dual-modulus prescaler in 120 nm CMOS,” European Solid-State Circuits Conference, 16-18 Sept. 2003, pp. 77-80.
    [30] Behzad Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, Vol.39, pp.1415-1424, September 2004.
    [31] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 2, pp. 62-70, 1989.
    [32] H. M. Cheema, R. Mahmoudi, M. A. T. Sanduleanu, and A. van Roermund, “A Ka band, static, MCML frequency divider, in standard 90 nm-CMOS LP for 60 GHz applications,”
    in Proc. IEEE RFIC Symp., Jun. 2007, pp. 541–544.
    [33] M. V. Krishna, M. A. Do, K. S. Yeo, and W. M. Lim, “Design and Analysis of Ultra Low Power True Single Phase Clock CMOS 2/3 Prescaler,” IEEE Trans. on Circuits and
    Systems-I, vol. 57, no. 1, Jan. 2010.
    [34] D.-J. Yang, and K. K. 0, “A 14-GHz 256/257 Dual-Modulus Prescaler With Secondary Feedback and Its Application to a Monolithic CMOS 10.4-GHz Phase-Locked Loop.” IEEE Trans. Microwave Theory Tech., Feb. 2004 ,pp 461-468
    [35] Ming-Wei Li; Po-Chi Wang; Tzuen-Hsi Huang; Huey-Ru Chuang; , "Low-Voltage, Wide-Locking-Range,Millimeter-Wave Divide-by-5 Injection-Locked Frequency Dividers," Microwave Theory and Techniques, IEEE Transactions on , vol.60, no.3, pp.679-685, March 2012
    [36] C. Y. Yang, G. K. Dehng, J. M. Hsu and S. I. Liu, “New dynamic flip-flops for high-speed dual-modulus prescaler ,” IEEE J. Solid-State Circuits, vol. 33, no. 10, pp. 1568-1571, Oct. 1998.
    [37] C. S Vaucher et al, “Silicon-Germanium ICs for Satellite Microwave Front-ends,” IEEE BCTM, September 2005, pp. 196-203.
    [38] Adrian Maxim, “A 10 GHz SiGe OC192 Frequency Synthesizer Using a Passive Feed-Forward Loop Filter and a Half Rate Oscillator” IEEE ESSCIRC, September
    2004, pp. 363-366.
    [39] T. Copani et al, “A 12-GHz Silicon Bipolar Dual-Conversion Receiver for Digital Satellite Applications,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1278-1287, June 2005.
    [40] J. Lee and B. Razavi, “A 40-Gb/s clock and data recovery circuit in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2181–2190, Dec. 2003.
    [41] S.-C. Tseng, C. Meng, S.-Y. Li, J.-Y. Su, and G.-W. Huang, “2.4 GHz divide-by-256 ~271 single-ended frequency divider in standard 0.35-um CMOS Technology,” in Proc.APMC 2005, 2005, vol. 2, p. 4. 106
    [42] Wenguan Li; Honglin Chen; Lei Shi; , “A 4.5-GHz 256 ∼ 511 multi-modulus frequency divider based on phase switching technique for frequency synthesizers,”Electron
    Devices and Solid-State Circuits (EDSSC), 2010 IEEE International Conference of, 15-17 Dec. 2010, pp.1-4.
    [43] C. Lee, L.-C. Cho, and S.-I. Liu, “A 44-GHz dual-modulus divide-by-4/5 prescaler in 90-nm CMOS technology,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC),
    2006, pp. 397–400.
    [44] ]D.-J. Yang, and K. K. 0, “A 14-GHz 256/257 Dual-Modulus Prescaler With Secondary Feedback and Its Application to a Monolithic CMOS 10.4-GHz Phase-Locked Loop.” IEEE Trans. Microwave Theory Tech., Feb. 2004 ,pp 461-468.
    [45] G. Girlando, S. A. Smerzi, T. Copani, and G. Palmisano, “A monolithic 12-GHz heterodyne receiver for DVB-S applications in silicon bipolar technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 952-959, Mar. 2005.
    [46] Alan W. L. Ng, Gerry C. T. Leung, Ka-Chun Kwok, Lincoln L. K. Leung, and Howard C. Luong ”A 1-V 24-GHz 17.5-mW Phase-Locked Loop in a 0.18-μm CMOS Process”, IEEE J. Solid-State Circuits, Vol. 41, NO. 6, JUNE 2006.
    [47] T. S. Aytur and B. Razavi, “A 2-GHz, 6-mW BiCMOS frequency syn-thesizer,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1457–1462,Dec. 1995.
    [48] Ian A. Young, Jeffrey K. Greason, and Keng L. Wong, “A PLL clock generator with 5 to 110 MHz of lock range for microprocessors,” IEEE J. Solid-State Circuits, vol. 27, no.
    11 pp.1599-1607, Nov. 1992.
    [49] Adrian Maxim, “A 10 GHz SiGe OC192 Frequency Synthesizer Using a Passive Feed-Forward Loop Filter and a Half Rate Oscillator” IEEE ESSCIRC, September 2004,
    pp. 363-366.
    [50] N. Pavlovic, J. Gosselin, K. Mistry and D. Leenaerts, “A 10GHz Frequency Synthesiser for 802.11a in 0.18pm CMOS,” IEEE ESSCIR, 21-23 Sept 2004, pp. 367-370.
    [51] Ja-Yol Lee; Kwidong Kim; Seung-Chul Lee; Jong-Kee Kwon; Jongdae Kim; Sang-Heung Lee; , “A 9.1-to-11.5-GHz Four-Band PLL for X-Band Satellite & Optical Communication Applications,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2007 IEEE, 3-5 June 2007, pp.233-236.
    [52] L. Perraud, et al., “A Dual-Band 802.11aWg Radio in 0.18vm CMOS,” Digest ISSCC 2004, pp. 94-95.
    [53] U. L. Rohde, Digital PLL Frequency Synthesizer. Englewood Cliffs, NJ: Prentice Hall, 1983.
    [54] Suijker, E.; de Boer, L.; Visser, G.; van Dijk, R.; Poschmann, M.; van Vliet, F.; , “Integrated X-band FMCW front-end in SiGe BiCMOS,” Microwave Conference (EuMC), 2010 European, 28-30 Sept. 2010, pp.1082-1085.
    [55] Coustou, A.; Sie, M.; Dubuc, D.; Graffeuil, J.; Tournier, E.; Llopis, O.; Plana, R.; Boulanger, C.; , “Frequency synthesis from 2 to 30 GHz using a 0.35μm BiCMOS SiGe technology,” Microwave Conference, 2003. 33rd European, 4-6 Oct. 2003, pp.395-398.
    [56] Lin, T.-H.; Lai, Y.-J.; , “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL,” Solid-State Circuits, IEEE Journal of , vol.42, no.2, pp.340-349, Feb. 2007
    [57] 林盈達, “應用於 24 GHz 頻率合成器之多模除數除頻器,” 國立台灣大學電機資訊學院電信工程研究所碩士論文.
    [58] Y. H. Lin, “Design and Implementation of Low Power CMOS RF Phase-Lock-Loop with Cascoded Divider,” Master Thesis, National Taiwan University, July. 2011.

    下載圖示
    QR CODE