簡易檢索 / 詳目顯示

研究生: 盧楷翔
Lu Kai-Siang
論文名稱: 十六族元素碲混合第六族過渡金屬 (鉬、鎢) 之團簇物與十六族元素硒混合過渡金屬 (鐵、銅) 之聚合物之合成、結構、對小分子之吸脫附能力與半導體性質討論
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 133
中文關鍵詞: 團簇小分子吸附
英文關鍵詞: Mo, W, cluster, Guest molecule absorption
DOI URL: http://doi.org/10.6345/NTNU202000168
論文種類: 學術論文
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Te-M−CO 系統 (M = Mo, W)
    將一系列多核含碲混合第六族金屬 (鉬、鎢) 羰基團簇物,包含籠型化合物 [Et4N]4[Te7Mo6(CO)20] ([Et4N]4[1])、籃型化合物 [Et4N]4[Te6Mo6(CO)15] ([Et4N]4[2]) 及碗型化合物 [Et4N]4[Te6W5(CO)12] ([Et4N]4[3]),分別與一當量的金屬氧化試劑 [Cu(MeCN)4][BF4] 於室溫下進行反應,可獲得一系列新穎的銅引入之含碲之鉬/鎢金屬羰基團簇物。有趣的是,此系列化合物中所引入銅離子的方式與銅離子的配位模式皆不盡相同。化合物 1 之陰離子作為籠型主體並將客體銅離子嵌入籠內,形成化合物 [Et4N]3[CuTe7Mo6(CO)20] ([Et4N]3[1-Cu])。由X-ray單晶繞射儀 (X-ray single crystal diffractometer) 解析其晶體結構得知,銅離子引入後其配位數高達八配位。有趣的是,當籃型化合物 2 與銅試劑進行反應,可得頂部 Mo(CO)3 片段被置換為銅原子之化合物 [Et4N]3[CuTe6Mo5(CO)12] ([Et4N]3[2-Cu]),其分子式與結構係由元素分析 (Elemental analysis, EA)、金屬比例分析 (Energy-dispersive X-ray spectroscopy, EDS) 與理論計算 (Density functional theory, DFT) 佐證。此外,當碗型化合物 3 以相同條件進行反應,可生成與化合物 2-Cu 有相似結構之籃型化合物 [Et4N]3[CuTe6W5(CO)12] ([Et4N]3[3-Cu])。從 X-ray 電子能譜 (High resolution X-ray photoelectron spectrometer, HR-XPS) 得知化合物 1-Cu、2-Cu 與 3-Cu 內的銅原子可獲得由 Te7Mo6(CO)20、Te6Mo5(CO)12 及 Te6W5(CO)12 基團提供的電子,使銅離子由正一價氧化至接近零價。我們針對此系列銅引入/置換/加成的化合物 1-Cu、2-Cu、3-Cu 與其前驅物 1−3 及其氧化產物 [Et4N]2[Te6W5(CO)12] 與 [Et4N]2[Te12M10(CO)24] (M = Mo、W) 進行電化學、固態反射式光譜及液態電子吸收光譜的分析及比較,並以理論計算佐證。

    Se−Fe−Cu−p-DCB 系統
    [SeFe3(CO)9Cu2(MeCN)2] 與 1.5 當量含氮配體para-dicyanobenzene (p-DCB) 進行反應,可生成一維 (one-dimensional) 單-雙股橋接 (singly-doubly linked) Z 字線型 (zigzag chain) 聚合物 [SeFe3(CO)9Cu2(p-DCB)1.5]n (1)。過去研究結果顯示,通過溶劑輔助研磨 (Liquid-assisted grinding, LAG) 方法將苯環衍生物 (toluene、xylene、ethylbenzene、cumene、pseudocumene、propylbenzene、ethyltoluene、durene)、多苯環化合物 (naphthalene、anthracene) 以及雜環化合物 (THF) 成功引入至聚合物 1 中。由 X-ray 結構解析得知,相較於聚合物 1 ,聚合物 1-S (S = toluene、THF) 的結構中主體聚合物鏈與鏈之間可滑動形成一空間容納引入的客分子,其中客分子 toluene 與 THF 可分別以 C−H…(toluene與 C−H•••O(THF) 與主體結構中的 p-DCB 產生弱作用力,使其可穩定嵌入於主體聚合當中。有趣的是,本研究結果進一步發現聚合物 1 可透過直接研磨碳數少的 C7 和 C8 客分子 (toluene、xylene、ethylbenzene、THF) 方法 (neat grinding) 完成客分子的引入並透過 PXRD 圖譜證明。此外,進一步選用與 THF 結構相似但具有  電子之furan 或 thiophene 作為客分子進行研磨,由PXRD 光譜判斷,客分子 furan 與 thiophene 亦以 C−H…弱作用力吸附於 p-DCB 上。另一方面,在合成聚合物 1 時額外加入含硝基之苯環化合物 nitrobenzene 進行一鍋化反應,可將 nitrobenzene 做為客分子嵌入,產生聚合物 1-nitrobenzene,其PXRD 圖譜與 1-toluene 相似。有趣的是,將聚合物 1 以 nitrobenzene 溶解後於低溫再結晶七天,可得黑色針狀晶體,經 X-ray 結構解析得知,其主體聚合物結構卻為單-單股橋接 (singly-singly linked) 之 [SeFe3(CO)9Cu2(p-DCB)(nitrobenzene)2]n。此外,聚合物 1-THF 可通過減壓加熱之方式移除低沸點客分子 THF 回收聚合物 1,而含高沸點之苯環類客分子 o-xylene 的聚合物 1-o-xylene 則利用 THF/Hexane 再結晶方式得到 1-THF,再將 THF移除,回收聚合物 1。最後通過固態反射式光譜得知,聚合物 1 及其衍生聚合物具有半導體特性其能隙 (Energy gap) 範圍於 1.43-1.50 eV,並利用高解析 X-ray 電子能譜 (High resolution X-ray photoelectron spectrometer, HR-XPS) 與 X-ray 吸收近邊緣結構光譜 (X-ray absorption near-edge spectrum, XANES) 量測聚合物中銅原子之價數,結果顯示銅原子由正一價降低至零價。

    Te-M−CO system (M = Mo, W)
    A series of polynuclear metal carbonyl telluride clusters, the cage-like cluster [Te7Mo6(CO)20]4- (1), the basket-like cluster [Te6Mo6(CO)15]4- (2), and the bowl-like cluster [Te6W5(CO)12]4- (3), were synthesized via the one-pot reaction of different ratios of Te powder, M(CO)6 (M = Mo, W), and Et4NBr under appropriate conditions. When compound 3 was treated with 1 equivalent I2, the W-W bonded oxidized product [Te6W5(CO)12]2- was formed. Further, when compounds 2 and 3 reacted with 1.5 equivalent I2, vertex-fused tricubane clusters [Te12M10(CO)24]2- (M = Mo, W) were obtained. If complex 2 or 3 was treated with 1 equivalent [Cu(MeCN)4][BF4], Cu-incorporated clusters [CuTe6M5(CO)12]3- (M = Mo, 2-Cu; W, 3-Cu) were synthesized. The Cu-encapsulated cluster [CuTe7Mo6(CO)20]3- (1-Cu) was obtained from 1 under the similar reaction condition. X-ray analysis showed that complex 1-Cu can be viewed as the introduction of Cu atom into the anionic host cage cluster 1. The XPS showed that the oxidation state of Cu atoms in complexes 1-Cu、2-Cu and 3-Cu were in an intermediate oxidation state between Cu(I) and Cu(0) and close to Cu(0). These results showed that the Cu(I) in 1-Cu、2-Cu and 3-Cu could be reduced by the tetraanionic Te7Mo6 or Te6M5 core (M = Mo, W), respectively. The structures and electronic and optical properties of these resulting clusters were comprehensively studied and supported by the density functional theory (DFT) calculation.  

    Se−Fe−Cu−p-DCB system
    One-dimensional zigzag single/double p-DCB-linked chain polymer, [SeFe3(CO)9Cu2(p-DCB)1.5]n, can be synthesized by the reaction of [SeFe3(CO)9Cu2(MeCN)2] with p-dicyanobenzene (p-DCB). This SeFe3(CO)9Cu2-based polymer, as a host, can capsule a variety of organic solvents or aromatic molecules through slippage of packing layers. A series of organic molecule-intercalated coordination polymers can be obtained easily via liquid-assisted grinding (LAG). In addition, these organic molecule-intercalated coordination polymers can reverse back to the initial host polymer by the release of guest molecules under appropriate conditions. The solid-state diffused reflectance spectra showed that these synthesized polymers exhibited semiconducting behaviors, via the C-H… or unexpected nonclassical C−H•••O(THF) interactions within the frameworks, revealing the efficient electron transport, which was further supported by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS).

    中文摘要 I ABSTRACT V 目錄 VIII 圖解目錄 XI 表目錄 XII 圖目錄 XIII 附圖目錄 XVII 附表目錄 XXI 第一章 1 1.1摘要 1 1.2前言 3 1.3 研究目標 7 1.4 結果與討論 8 1.5 結論 23 1.6實驗部分 24 1.7 參考文獻 34 第二章 64 2.1 摘要 64 2.2 前言 66 2.3 研究目標 69 2.4 結果與討論 70 2.5 結論 91 2.6 實驗部分 92 2.7 參考文獻 107

    CH1
    (1) Shi, Y.-L.; Gao, Y.-C.; Shi, Q.-Z. Organometallics, 1987, 6, 1528–1531.
    (2) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Coord. Chem. Rev., 2012, 256, 637–694.
    (3) 簡思環,國立臺灣師範大學碩士論文,2013。
    (4) 謝明惠、李昱輝未發表之結果。
    (5) Wang, S.; Song, Y.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X.; Chen, M.; Li, P.; Zhu, M. J. Am. Chem. Soc. 2015, 137, 4018–4021.
    (6) Silalahi, R. P. B.; Chakrahari, K. K.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Chem. Asian J. 2018, 13, 500–504.
    (7) Carey, J.; Fettinger, J. C.; Poli, R.; Smith, K. M. Inorg. Chim. Acta 2000, 299, 118–122.
    (8) Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastin, J., King, R. C. Jr., Eds.; Physical Electronics:  Eden Prairie, MN, 1992.
    (9) Shieh, M.; Chu, Y.-Y.; Miu, C.-Y.; Wu, P.-F.; Zeng. T.-M. Dalton Trans., 2010, 39, 1492–1503.
    (10) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    (11) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827‒1837.
    (12) (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
    (13) Pienack, N.; Puls, A.; Näther, C.; Bensch, W. Inorg. Chem., 2008, 47, 9606–9611.
    (14) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155–2160. (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
    (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
    (16) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244–13249.
    (17) Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735−746.
    (18) (a) Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near-Hartree−Fock Water Dimer. J. Chem. Phys. 1983, 78, 4066−4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899−926.
    (19) (a) Avogadro: An Open-Source Molecular Builder and Visualization Tool, version 1.2.0, http://avogadro.openmolecules.net/. (b) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminf. 2012, 4, 4−17.
    (20) Gorelsky, S. I. AOMix. http://www.sg-chem.net/.

    CH2
    (1) Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.
    (2) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 975.
    (3) Li, J.-R.; Sculley, J.; Zhou, H.-C., Chem. Rev. 2012, 112, 869.
    (4) 林建男,台灣師範大學博士論文,2015。
    (5) 何秉叡,台灣師範大學碩士論文,2017。
    (6) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    (7) (a) Shieh, M.; Tsai, Y.-C. Inorg. Chem. 1994, 33, 2303. (b) Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2527. (c) Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. M.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 4392.
    (8) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827.
    (9) Shieh, M.; Liu, Y.-H.; Wang, C.-C.; Jian, S.-H.; Lin, C.-N.; Chen, Y.-M.; Huanga, C.-Yi. New J. Chem., 2019, 43, 11832.
    (10) (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
    (11) Pienack, N.; Puls, A.; Näther, C.; Bensch, W. Inorg. Chem., 2008, 47, 9606–9611.
    (12) Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastin, J., King, R. C. Jr., Eds.; Physical Electronics:  Eden Prairie, MN, 1992.
    (13) Bressler, C.; Chergui, M.; Chem. Rev. 2004, 104, 1781.
    (14) 謝明惠、張嘉芳未發表之結果。
    (15) 謝明惠、石方俞未發表之結果。

    無法下載圖示 本全文未授權公開
    QR CODE