簡易檢索 / 詳目顯示

研究生: 林哲民
Che-Ming Lin
論文名稱: 國小學生因數與倍數學習進程之探究
The Study of Elementary Students’ Learning Progression for Divisor and Multiple
指導教授: 譚克平
Tam, Hak-Ping
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 218
中文關鍵詞: 學習進程整除因數倍數
英文關鍵詞: learning progression, being divided with no remainder, divisor, multiple
論文種類: 學術論文
相關次數: 點閱:268下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是希望探討國小學生對於因數與倍數之學習進程,並初步發展因數與倍數學習進程評量試題。基於本研究之研究目的,研究者進一步提出兩點研究問題,陳述如下:
    1.國小學生對於因數與倍數之學習進程的內容為何?
    2.本研究所初步開發之因數與倍數學習進程評量試題的可行性為何?
    在研究流程方面,研究者首先對國內外學習進程的相關文獻進行討論,以釐清學習進程的意涵、特徵與研究方法;再根據所討論出的學習進程研究方法發展國小因數與倍數學習進程架構,並透過評量施測的方式檢驗此架構的內容。
    本研究所採用的研究方法是文獻分析法與調查研究法。研究者係以過去對於因數與倍數的相關研究文獻為基礎,同時為兼顧過去的研究結果與現階段學生的實際表現情形,研究者針對高雄市某國小6位六年級學生以及二、三、四、五年級各2位學生,共14位學生進行訪談,以瞭解不同年級學生在因數與倍數相關概念上的表現,並協助發展初步的學習進程架構。
    擬定初步學習進程的內容後,研究者將以此學習進程的內容進行試題的開發,對用以測量學生在學習進程中所屬階層的評量試題進行初步的發展。在評量施測階段,研究者蒐集高雄市某五所國小三、四、五、六年級共619位學生做為研究對象進行施測,以檢驗研究者所初步發展之學習進程與學生的學習表現是否相符。
    本研究一共發展出三套學習進程,包含整除概念學習進程、因數概念學習進程以及倍數概念學習進程,研究的結果發現:(1)在整除概念學習進程中學生必須先初步理解整除的概念,才能進一步掌握「a被b整除」與「a整除b」的語言使用;(2)在因數概念學習進程中,學生必須先從乘、除法算則理解因數關係,才能進而掌握因數的概念,之後開始留意到兩數共同的因數,而發展出公因數的概念,最後能夠從公因數的概念理解中,精緻出最大公因數的意涵;(3)在倍數概念學習進程中,學生必須先從乘、除法算則理解倍數關係,才能進而掌握倍數的概念,之後開始留意到兩數共同的倍數,而發展出公倍數的概念,最後能夠從公倍數的概念理解中,精緻出最小公倍數的意涵;(4)學生在初步掌握因、倍數概念的意涵時,即能夠開始留意到「因、倍數互逆」的關係,並且隨著學生對於因、倍數概念的掌握程度,學生能夠進而對「因、倍數互逆」的關係進行瞭解與交叉應用;(5)學生能夠解決高層次的例行性試題,但卻無法解決較低層次的非例行性試題。
    本研究所初步開發的學習進程評量,在整除概念試題的部分,能夠將498位學生進行學習進程階層的歸類,占總樣本數的80.4%;在因數概念試題的部分,能夠將348位學生進行學習進程階層的歸類,占總樣本數的76.7%;在倍數概念試題的部分,能夠將453位學生進行學習進程階層的歸類,占總樣本數的73.2%;研究者認為本評量工具在測量學生學習進程階層的功能上,具有一定程度的可行性,並且在進行調整與修正後,將能夠對學生在學習進程中的階層表現有更高的解釋能力。
    根據上述的研究發現,本研究建議,未來的研究者可以針對學生的學習採用追蹤性的研究方式,以本研究所發展的學習進程內容,針對學生在整除、因數或倍數概念的學習過程進行更深入的探討,在評量工具的設計與使用方面,試題設計應兼顧例行性試題與非例行性試題,並建議使用更多的評量試題以及多元的判準原則來判斷學生的所屬階層。

    The purpose of my dissertation is to look for the elementary school students’ learning progressions on the divisor and multiple and to develop initially the assessments about the learning progressions on the divisor and multiple.
    On the base of my research purposes, I have two research questions as follows.
    1.What are the contents of the elementary school students’ learning progressions on the divisor and multiple?
    2.How well are my initial assessments concerning the learning progressions on the divisor and multiple?
    When it comes to my research procedures, I discussed the relative paper, native or foreign, at first so as to clarify the meaning, the character, and the research mode of the learning progressions. Then I based on the discussed research modes to develop my learning progression instrument for elementary school students on the divisor and multiple, and I tested my instrument by testing some elementary school students.
    My research methods are survey research and documentary analysis. Based on the relative research paper about divisor and multiple and based on the past research results and based on the nowadays students’ performance, I asked fourteen students, including six 6-grade, two 2- grade, two 3- grade, two 4-grade, two 5-grade students in Kaohsiung, so that I may understand those different grades students’ performance on the concept of divisor and multiple, and that would help me develop my learning progression instrument.
    After my initial instrument, I built my assessment to test the attributive level of the students. In this stage, there were 619 students, ranging from 3-grade to 6-grade of five elementary schools in Kaohsiung, participating my assessment and finally I tested their scores and their performance to see whether they agreed with.
    There are three learning progressions in my research, including the learning progression of concept of being divided with no remainder, the learning progression of concept of divisor, and the learning progression of concept of multiple. Based on my result, I found that (1) on the learning progression of concept of being divided with no remainder, the students had to clear the concept first, then they would differ the sentence “A is divisible by B” from the sentence “A divides B”; (2) on the learning progression of concept of divisor, students have to understand the relation among every element from multiplication and division first, then they will know the concept of divisor; after they master the concept of divisor, they look out that a number may, at the same time, be a divisor of two different numbers, and they will develop the concept of common divisor; at last, they extract the meaning of great common divisor from understanding the concept of common divisor; (3) on the learning progression of concept of multiple, students have to understand the relation among every element from multiplication and division first, then they will know the concept of multiple; after they master the concept of multiple, they look out that a number may, at the same time, be a multiple of two different numbers, and they will develop the concept of common multiple; at last, they extract the meaning of least common multiple from understanding the concept of common multiple; (4) when they first understood the meaning of divisor and multiple, they knew the inverse relation of divisor and multiple; also, with their extent about those concepts, they may apply the concept of inverse relation of divisor and multiple; (5) students could solve the highest level routine examinations, yet could not solve lower level non-routine examinations.
    Based on the assessment, I distributed 498 students (80.4%, accounting for all 619 students) to my learning progression of concept of being divided with no remainder, 348 students (76.7%, accounting for 454 students) to my learning progression of concept of divisor, and 453 students (73.2%, accounting for 619 students) to my learning progression of concept of multiple. I thought that my assessment did work for some extent, and after some adjusting and revising, it may explain much more about students’ levels of learning progressions.
    From the above result, I suggest that the future researcher use my learning progression instrument to track students’ learning circumstance so that they may do some more conferring. As for the assessment, I suggest that the future researcher give consideration on routine tests and non-routine tests, as well as use more quantity of tests and multi-principles to judge which level the students have.

    第壹章 緒論 第一節 研究動機……………………………….1 第二節 研究目的……………………………….5 第三節 研究問題……………………………….6 第四節 名詞釋義……………………………….7 第五節 研究範圍與限制……………………….9 第貳章 文獻探討 第一節 學習進程的發展……………………....10 第二節 學習進程的意涵………………………13 第三節 學習進程的特徵………………………16 第四節 學習進程的研究方法…………………20 第五節 學習進程與學習軌跡的異同…………29 第六節 因數與倍數相關文獻之探討…………35 第參章 研究方法 第一節 研究設計與構想………………………47 第二節 研究過程………………………………49 第三節 研究對象………………………………52 第四節 研究工具………………………………54 第五節 資料處理與分析………………………64 第肆章 資料分析 第一節 因數與倍數之文獻分析………………66 第二節 訪談之資料分析………………………74 第三節 初步發展期之學習進程………………95 第四節 因數與倍數學習進程評量試卷之資料分析…102 第伍章 研究結果的討論與建議 第一節 研究結果的討論……………………..136 第二節 建議…………………………………..148 參考文獻 一、中文部分…………………………………..150 二、英文部分…………………………………..153 附錄 附錄一 訪談劇本………………………………157 附錄二 專家效度問卷…………………………168 附錄三 評分規準 …………………………….185 附錄四 三年級施測問卷……………………..192 附錄五 四年級施測問卷………………………198 附錄六 五、六年級施測問卷…………………208

    于國善(2003)。國小學童因數補救教學之個案分析。國立屏東師範學院數理教育研究所碩士論文。未出版。
    何欣玫(2004)。國小六年級學生因數與倍數之數學解題溝通能力研究。國立台中師範學院教育測驗統計研究所碩士論文。未出版。
    周文忠(2002)。國小學童因數與倍數迷思概念類型及成因之研究。行政院國家科學委員會專題研究成果報告(NSC90-2521-S-153-002)。屏東市:國立屏東教育大學。
    林珮如(2002)。國小學童因數解題與迷思概念之研究。國立屏東師範學院數理教育研究所碩士論文。未出版。
    邱慧珍(2002)。國小學童倍數迷思概念之研究。國立屏東師範學院數理教育研究所碩士論文。未出版。
    南一書局(2012)。國民小學數學課本第九冊。台南市:南一書局企業股份有限公司。
    南一書局(2012)。國民小學數學課本第十一冊。台南市:南一書局企業股份有限公司。
    南一書局(2012)。國民小學數學課本第三冊。台南市:南一書局企業股份有限公司。
    施秀麗(2007)。國小六年級學童倍數概念結構分析之研究。國立臺中教育大學數學教育學系在職進修教學碩士學位班碩士論文。未出版。
    施美多(2007)。國小六年級學童因數概念之分析研究。國立臺中教育大學數學教育學系在職進修教學碩士學位班碩士論文。未出版。
    國家教育研究院(2011)。國民小學數學課本第九冊。台南市:翰林出版事業股份有限公司。
    國家教育研究院(2011)。國民小學數學課本第十一冊。台南市:翰林出版事業股份有限公司。
    國家教育研究院(2011)。國民小學數學課本第三冊。台南市:翰林出版事業股份有限公司。
    康軒文教事業(2012)。國民小學數學課本第九冊。台北市:康軒文教事業股份有限公司。
    康軒文教事業(2012)。國民小學數學課本第十一冊。台北市:康軒文教事業股份有限公司。
    康軒文教事業(2012)。國民小學數學課本第三冊。台北市:康軒文教事業股份有限公司。
    張郁雯(2012)。學習進展:形成性評量與總結性評量之整合架構。教育人力與專業發展,29(4),15-26。
    教育部(2008)。國民中小學九年一貫課程綱要。台北市:教育部。
    陳奎憙(2007)。教育社會學。台北市:三民書局。
    陳素如(2010)。國小六年級學童聆聽理解能力與公因數公倍數之數學成就相關情形。國立臺中教育大學數學教育學系碩士論文。未出版。
    陳清義(1996)。國小五年級學童因數、倍數問題學習瓶頸之研究。臺北市立師範學院碩士論文。未出版。
    陳智遠(2011)。Test Graf 98在國小六年級學童因數與倍數概念之試題編製與分析研究。國立臺中教育大學數學教育學系在職進修教學碩士學位班碩士論文。未出版。
    陳筱涵(2004)。高雄地區國一學童因數與倍數單元錯誤類型之分析研究。國立高雄師範大學應用數學研究所碩士論文。未出版。
    陳標松(2003)。國小六年級數學學習困難學童因數倍數問題解題之研究。國立彰化師範大學特殊教育學系在職進修專班論文。未出版。
    黃士騰(2005)。網路教學課程實做之行動研究-以國小數學科因數單元補救教學為例。國立嘉義大學數學教育研究所碩士論文。未出版。
    黃玉雙(2011)。國小五年級學童在因數與倍數問題表現之研究-以高雄縣市為例。國立屏東教育大學數理教育研究所碩士論文。未出版。
    黃國勳、劉祥通(2003)。國小五年級學生學習因數教材困難之探討。科學教育研究與發展季刊,30,52-70。
    黃寶彰(2003)。六、七年級學童數學學習困難部分之研究。國立屏東師範學院數理教育研究所碩士論文。未出版。
    黃耀興、邱易斌(1999)。國小五年級學童在因數、倍數學習上成就之探討。國立屏東師範學院專題報告。未出版。
    臺灣PISA國家研究中心(2011)。臺灣PISA 2009精簡報告。台南市:國立台南大學。
    劉伊祝(2008)。高雄市小五學生因數與倍數單元錯誤類型與成因之探討。國立屏東科技大學技術及職業教育研究所碩士論文。未出版。
    劉昆夏(2012)。科學概念學習進程的發展、評量與教學:以氧化還原為例。國立中山大學教育研究所博士論文。未出版。
    劉昱泓(2012)。國小六年級學生因數與倍數概念認知診斷與試題關聯之研究。國立臺中教育大學教育測驗統計研究所碩士論文。未出版。
    蕭正洋(2003)。國小學童倍數補救教學實施之研究。國立屏東師範學院數理教育研究所碩士論文。未出版。
    賴容瑩(2005)。國一學童最大公因數與最小公倍數解題困難之研究。國立臺灣師範大學科學教育研究所碩士論文。未出版。
    Alonzo, A., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93, 389-421.
    Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, and Levels of Sophistication. The Mathematics Enthusiast, 8, 507-569.
    Briggs, D. C., & Alonzo, A. C. (2009). The psychometric modeling of ordered multiple-choice item responses for diagnostic assessment with a learning progression. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
    Brown, A. L. (1997). Transforming schools into communities of thinking and learning about serious matters. American Psychologist, 52(4), 399–413.
    Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81-89.
    Clements, D. & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. NY: Routledge.
    Driver, R., Leach, J., Scott, P., & Wood-Robinson. (1994). Young people’s understanding of science concepts: Implications of cross-age studies for curriculum planning. Studies in Science Education, 24, 75-100.
    Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students’ understandings of modern genetics across the 5th–10th grades. Journal of Research in Science Teaching, 46, 655-674.
    Duschl, R. Maeng, S. & Sezen , A. (2011). Learning Progressions and teaching sequences: a review and analysis. Studies in Science Education. 47(2), 123-182.
    Ernest, P. (1998). A postmodern perspective on research in mathematics education. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: a search for identify (pp.71-85). Netherlands: Kluwer Academic.
    Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46, 675-698.
    Mullis, I. V. S., Martin, M. O., & Foy, P. (2008). TIMSS 2007 international mathematics report: Findings from IEA's Trends in International Mathematics and Science Study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College.
    National Council of Teacher of Mathematics. (2000). The principles and standards for school mathematics. Reston, VA: NCTM.
    National Research Council. (2001). Knowing what students know: The science and design of educational assessment. Committee on the Foundations of Assessment. J. Pellegrino, N. Chudowsky, & R. Glaser (Eds). Washington, DC: National Academy Press.
    National Research Council. (2006). Systems for state science assessment. Committee on test design for K-12 science achievement. M. Wilson & M. Bertenthal (Eds.), Board on Testing and Assessment, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
    National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Committee on Science Learning, Kindergarten through Eighth Grade. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Washington, DC: National Academy Press.
    Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47, 768-787.
    Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ache´r, A., & Fortus, D., Shwartz, Y., Hug B., Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46, 632-654.
    Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
    Simon, M. A., Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91-104.
    Smith, C., Wiser, M., Anderson, C. W., Krajcik, J., and Coppola, B. (2004). Implications of research on children’s learning for assessment: Matter and atomic molecular theory. Invited paper for the National Research Council committee on Test Design for K-12 Science Achievement. Washington, D.C.: National Research Council.
    Steedle, J. T., & Shavelson, R. J. (2009). Supporting valid interpretations of learning progression level diagnoses. Journal of Research in Science Teaching, 46, 699-715.
    Steffe, L. P. (2004). On the construction of learning trajectories of children: The case of commensurate fractions. Mathematical Thinking and Learning, 6(2), 129-162.
    Stevens, S., Shin, N., Delgado, C., Krajcik, J., & Pellegrino, J. (2007). Using learning progressions to inform curriculum, instruction and assessment design. Paper presented at the National Association for Research in Science Teaching, New Orleans, LA.
    Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46, 716-730.

    下載圖示
    QR CODE