簡易檢索 / 詳目顯示

研究生: 林炫亨
Lin, Hsuan-Heng
論文名稱: 以二甲基苯酮建構的雙極性有機發光二極體材料
Benzophenone-Based Bipolar Compounds for Organic Light Emitting Diodes Application
指導教授: 葉名倉
Yeh, Ming-Chang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 有機發光二極體二甲基苯酮熱擾動延遲螢光主體材料
英文關鍵詞: OLED, TADF, host material
DOI URL: https://doi.org/10.6345/NTNU202202934
論文種類: 學術論文
相關次數: 點閱:92下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由鈀金屬物催化之碳-氮鍵耦合、碳-碳鍵耦合將不同的推電子基團引入二苯基甲酮 (benzophenone) 片段的苯環中,本研究合成出四個雙極化分子 (bipolar),化合物中有三個經單晶結構解析確認結構。由於推電子基團位於羰基的鄰位,分子的共軛性因為立體障礙而降低,使得分子擁有較高之單重激發態(HOMO與LUMO的能階差則大約為2.7−3.0 eV,HOMO能階位置則約落在5.7 eV−5.9 eV)。化合物有不錯的熱穩定性,熱裂解溫度高達300 ℃以上,玻璃轉移溫度約在 80−130 ℃。配合雙極性特徵,這些分子有利於未來作為可摻雜發光客體的主體材料。
    化合物於低極性的溶劑的放光波段約為370 −550 nm之間,屬於藍光或綠光;但因立體障礙使得螢光量子產率僅達19%。化合物之螢光可能來自分子中片段的局部發光,或是電荷轉移躍遷之放光。

    Different arylamines were incorporated at the ortho position of the phenyl rings of benzophenone via palladium complex catalyzed C-N or C-C coupling reaction to form bipolar compounds. Among four new compounds, three were also characterized by X-ray single crystal structural determination. Non-planar conformation of the molecules due to significant steric congestion results in weaker conjugation and larger HOMO/LUMO gap (2.7−3.0 eV). The HOMO energy level was measured to be 5.7 eV−5.9 eV. The thermal decomposition temperatures of the compounds are above 300 ℃ and the glass transition temperatures fall in the range of 80−130 ℃. The new compounds hsve potential as the host for phosphorescent emitter due to their large HOMO/LUMO gap, good thermal properties together with dipolar character.
    In low polar solvent, the compounds emit in the range of 370−550 nm, which is in the blue or green region. However, twisted structure of the molecules jeopardizes the emission efficiency and the best solution quantum yield only reaches 19%. The emission originates from localized π−π* transition or intramolecular charge transfer.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 縮寫列表 IX 第一章 緒論 1 1-1 前言 1 1-2 有機發光二極體之歷史起源與發展 2 1-3 有機發光二極體之發光原理與放光機制 3 1-3-1 螢光與磷光 3 1-4 有機發光二極體之元件結構與發光材料 5 1-4-1 陽極材料與電洞注入層材料 6 1-4-2 陰極材料與電子注入層材料 6 1-4-3 電洞傳輸層材料 7 1-4-4 電子傳輸層材料 8 1-4-5 發光層材料 9 第二章 研究動機 13 2-1 設計動機和原理 13 2-2 推電子基團 13 2-3 拉電子基團 14 2-4 結構設計 15 第三章 實驗方法 17 3-1 實驗儀器 17 3-2 套用公式及介紹 19 3-2-1 能階值的計算 19 3-2-2 量子產率之計算 20 3-2-3 外部量子效率 20 3-3 實驗藥品與溶劑 21 3-4 合成步驟 23 第四章 結果與討論 34 4-1 實驗合成與反應機構之探討 34 4-2 單晶繞射結構鑑定與討論 43 4-3 熱性質數據與討論 50 4-4 光物理性質測量結果與討論 54 4-5 能階探討結果與討論 62 4-6 理論計算結果與討論 65 第五章 結論 69 參考文獻 70 附錄 73

    1. Pope, M.; Kallmann, H. P.; Magnante, P. J. J. Chem. Phys. 1962, 37, 2042.
    2. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holme, A. B. Nature 1990, 347,539.
    4. Gilbert, A.; Baggott, J. E. Essentials of molecular photochemistry Blackwell Scientific, London, 1991.
    5. a) VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160. b) Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807.
    6. a) Wakimoto, T.; Fukada, Y.; Nagayama, Y.; Yokoi, A.; Nakada, H.; Tsuchida, M. IEEE Trans. Electron. Devices 1997, 44, 1245. b) Stoβel, M.; Staudigel, J.; Steuber. F.; Blassing, J.; Simmerer, J.; Winnacker, A. Appl. Phys. Lett. 2000, 76, 115. c) Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F. J. Appl. Phys. 2003, 93, 6159.
    7. a) Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Appl. Phys. Lett. 1999, 75, 1697. b) Salbeck, J.; Yu, N.; Bauer,; WeissGrtel, F.; Bestgen, H. Synth. Met. 1997, 91, 209. c) Shirota, Y.; Okumoto, K.; Inada, H. Synth. Met. 2000, 111, 387. d) Thomas, K. R. J.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404.
    8. a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1498. b) Kido, J.; Ohtaki, C.; Okuyama, K.; Nagai, K. Jpn. J. Appl. Phys. 1993, 32, L917. c) Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1996, 8, 579. d) Wang, C.; Jung, G. Y.; Batsanov, A. S.; Bryce, M. R.; Petty, M. C. J. Mater.Chem. 2002, 12, 173. e) Aragay, G.; Frontera, A.; Lloveras, V.; Gancedo, J. V.; Ballester, P. J. Am. Chem. Soc. 2013, 135, 2620. f) Kang, J. W.; Lee, D. S.; Park, H. D.; Park, Y. S.; Kim, J. W.; Jeong, W. I.; Yoo, K. M.; Go, K.; Kim, S. H.; Kim, J. J. J. Mater. Chem. 2007, 17, 3714.
    9. a) Huang, T. H.; Lin, J. T.; Chen, L. Y.; Lin, Y. T.; Wu, C. C. Adv. Mater. 2006, 18, 602. b) Ye, J.; Chen, Z.; Wang, K.; An, F.; Yuan, Y.; Chen, W.; Yang, Q.; Zhang, X.; Lee, C. S. Chem. Eur. J. 2014, 20, 13762.
    10. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov,; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature, 1998, 395, 151.
    11. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature, 2012, 492, 234.
    12. Zhang, Q.; Chen, J.; Chen, Y.; Wang, L.; Ma, D.; Jing X.; Wang, F. J. Mater. Chem. 2004, 14, 895.
    13. Chen, Y. H.; Lin, S. L.; Chang, Y. C.; Chen, Y. C.; Lin, J. T.; Lee, R. H.; Kuo, W. J.; Jeng, R. J. Org. Electron. 2012, 13, 43.
    14. Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P. Y.; Huang, M. J.; Wu, C. Z.; Yang, C. Y.; Chiu, M. J.; Chu, L. K.; Lin, H. W.; Cheng, C. H. J. Am. Chem. Soc. 2016, 138, 628.
    15. Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Wu, C. C.; Lin, H. W.; Cheng, C. H. ACS Appl. Mater. Interfaces. 2016, 8, 27026.
    16. Lee, J.; Yasuda, T. Bull. Chem. Soc. Jpn. 2017, 90, 231.
    17. Bredas, J. L.; Silbey, R.; Boudreaux, D. S.; Chance, R. R.; J. Am. Chem. Soc. 1983, 105, 6555.
    18. Asokan, T.; Sudarshan, T. J. Appl. Phys. 1994, 75, 3715.
    19. Adachi, C. 15th International Symposium on Novel Aromatic Compounds, Taipei, Taiwan, July 28-August 2 (2013).
    20. a) Paul, F.; Patt, J.; Hartwig, J. J. Am. Chem. Soc. 1994, 116, 5969. b) Guram, A.; Buchwald, S. J. Am. Chem. Soc. 1994, 116, 7901. c) Guram, A.; Rennels, R.; Buchwald, S. Angew. Chem., Int. Ed., 1995, 34, 1348. d) Louie, J.; Hartwig, J. Ttrahedron. Lett. 1995, 3609. e) Paul, F.; Baranano, D.; Richards, S. f) Hartwig, J. J. Am. Chem. Soc. 1996, 118, 3626.
    21. Dauben, H. J.; McCoy, L. L. J. Am. Chem. Soc. 1959, 81, 4863. Russell, G. A.; Desmond, K. M. J. Am. Chem. Soc. 1963, 85, 3139.
    22. a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018.; b) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.; c) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866. d) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 3437.
    23. Dixon, J. M.; Taniguchi, M.; Lindsey J. S. Photochem. Photobiol. 2005, 81, 212.
    24. Jones II, G.; Jackson, W. R.; Choi, C.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294.
    25. Hong, Y.; Lam, J. W. Y.; Tang, B. Z.; Chem. Soc. Rev. 2011, 40, 5361.
    26. a) Data, P.; Pander P.; Okazaki, M.; Takeda, Y.; Minakata, S.; Monkman, A. P. Angew. Chem., Int. Ed. 2016, 55, 5739. b) Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T. Angew. Chem., Int. Ed. 2016, 55, 7171.

    下載圖示
    QR CODE