簡易檢索 / 詳目顯示

研究生: 陳柏睿
Chen, Pao-Jui
論文名稱: 無鉛且空氣穩定之銻系列鈣鈦礦電觸媒應用於染料敏化太陽能電池:鈍化劑立體障礙之影響
Lead-free and Air-stable Antimony Perovskite Electro-catalyst for Dye-sensitized Solar cells: Steric Effect of Surfactant
指導教授: 李君婷
Li, Chun-Ting
口試委員: 李君婷
Li, Chun-Ting
李權倍
Lee, Chuan-Pei
林建村
Lin, Jiann-T'suen
口試日期: 2022/07/20
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 59
中文關鍵詞: 空氣穩定電催化劑無鉛表面鈍化二維結構
英文關鍵詞: Air-stability, Electro-catalyst, Lead-free, Surface passivation, Two-dimensional structure
研究方法: 實驗設計法調查研究
DOI URL: http://doi.org/10.6345/NTNU202201514
論文種類: 學術論文
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣且電化學穩定之銻系列無鉛鈣鈦礦(烷基胺鈍化和芳香胺鈍化的FA3(Sb2-xGex)(Br9-yIy)薄膜)可通過簡單的一步滴塗法成功製備。透過不同的表面鈍化劑,包括三種烷基胺(單正丁基溴化銨、二正丁基溴化銨和四正丁基溴化銨)和四種芳香胺(2,2’-聯吡啶、4,4’-聯吡啶、1,10-菲咯啉和三苯胺),這些空氣穩定之FA3(Sb2-xGex)(Br9-yIy)薄膜主要由結晶相或非晶相的二維三方FA3Sb2Br9組成,且含有少量二維三方和零維六方FA3Sb2I9結晶。在不同的烷基胺中,表面鈍化劑上的正丁基取代基越少,可促使越多二維鈣鈦礦顆粒之形成,且提供較低的立體障礙,誘導二維鈣鈦礦顆粒沿著更嚴格的一維方向組裝。單正丁基溴化銨鈍化之NF/TiO2/FA3(Sb2-xGex)(Br9-yIy)電極提供了8.82%的電池效率,可歸因於:(1)一級胺的有效鈍化、(2)高薄膜粗糙度/電催化活性位點、(3)可自組裝一維之微米柱進行良好的電子傳輸。在不同的芳香胺中,1,10-菲咯啉鈍化之NF/TiO2/FA3(Sb2-xGex)(Br9-yIy)電極達到了8.38%的電池效率,可歸因於:(1)剛性的銻-1,10-菲咯啉配位化合物的有效鈍化、(2)高薄膜粗糙度/電催化活性位點、(3)三維微米立方體有利於電子轉移。這兩種成功鈍化之NF/TiO2/FA3(Sb2-xGex)(Br9-yIy)電極可媲美傳統的白金電極(8.78%),顯示著空氣穩定的銻系列鈣鈦礦具備應用於多種電化學元件之巨大潛力。
    關鍵字 : 空氣穩定、電催化劑、無鉛、表面鈍化、二維結構

    Air-stable and electrochemical sustainable lead-free perovskites, the alkyl-amine-passivated and aryl-amine-passivated FA3(Sb2-xGex)(Br9-yIy), were successfully prepared via a one-step drop-coating process. With the present of various surfacts, including three alkyl-amines (mono-n-butylammonium bromide, di-n-butylammonium bromide, and tetra-n-butylammonium bromide) and four aryl-amines (2,2’-bipyridine, 4,4’-bipyridine, 1,10-phenanthroline, and triphenylamine), the decent air-stability were obtained in several FA3(Sb2-xGex)(Br9-yIy) filmes, which were all mainly composed of 2D trigonal FA3Sb2Br9 (in good crystalline or in amorphous phase) with minor 2D-trigonal/0D-hexagonal FA3Sb2I9 crystalline. Among different alkyl-amines, the fewer n-butyl substitutions on the surfactant not only caused the more formation of 2D perovskite particles, but also induced the assembly of the 2D perovskite particles through the more restrict 1D direction due to the less steric hindrance. Then the MBAB-passivated NF/TiO2/FA3(Sb2-xGex)(Br9–yIy) electrode provided the optimal cell efficiency of 8.82% due to (1) efficient passivation by primary amine, (2) high film roughness/electro-catalytic active sites, and (3) good charge transfer via the self-assembled 1D micro-rod. Among different aryl amines, the 1,10-Phen-passivated NF/TiO2/FA3(Sb2-xGex)(Br9–yIy) electrode reached the optimal cell efficiency of 8.38% due to (1) efficient passivation by rigid Sb-1,10-Phen coordinated compound, (2) high film roughness/electro-catalytic active sites, and (3) good charge transfer via the 3D micro-cube. Both of the MBAB-passivated and 1,10-Phen-passivated NF/TiO2/FA3(Sb2-xGex)(Br9–yIy) electrodes showed a comparable performance to the NF/Pt electrode (8.78%), implying a great potential of air-stable Sb-based perovskite for multiple electrochemical applications.
    Keywords: Air-stability, Electro-catalyst, Lead-free, Surface passivation, Two-dimensional structure

    致謝 i 中文摘要 ii Abstract iii Table of Contents iv List of Tables v List of Figures vi List of Schemes viii Nonmenclatures ix Chapter 1 Introduction 1 1-1 Renewable energy and solar cells 1 1-2 Perovskite material 7 1-3 Motivation 17 Chapter 2 Experimental Section 19 2-1 Materials 19 2-2 TiO2 photoanode 19 2-3 Perovskite counter electrode 21 2-4 DSSC fabrication 22 2-5 Instruments and Analyses 23 Chapter 3 Result and Discussion 25 3-1 Composition and loading amount of perovskite precursor 25 3-2 Surface passivation 28 3-3 Photovoltaic performance 40 3-4 Tafel polarization plot and electrochemical impedance spectra 44 3-5 Optimal concentrations of surfactants 48 Chapter 4 Conclusions 51 References 53 Appendix A 58 Curriculum vitae 58

    [1]. N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, and F. Aratani. Purification of metallurgical-grade silicon up to solar grade. Progress in Photovoltaics: Research and Applications, 2001, 9, 203-209.
    [2]. S.-s. Zheng, J. Safarian, S. Seok, S. Kim, T. Merete, and X.-t. Luo. Elimination of phosphorus vaporizing from molten silicon at finite reduced pressure. Transactions of Nonferrous Metals Society of China, 2011, 21, 697-702.
    [3]. C. P. Khattak, F. Schmid, D. B. Joyce, E. A. Smelik, and M. A. Wilkinson. Production of solar-grade silicon by refining of liquid metallurgical-grade silicon. Master thesis ed: National Renewable Energy Laboratory, America; 1999. 1-50 p.
    [4]. F. C. Marques, A. D. S. Cortes, and P. R. Mei. Solar Cells Fabricated in Upgraded Metallurgical Silicon, Obtained Through Vacuum Degassing and Czochralski Growth. Silicon, 2018, 11, 77-83.
    [5]. D. Luo, N. Liu, Y. Lu, G. Zhang, and T. Li. Removal of impurities from metallurgical grade silicon by electron beam melting. Journal of Semiconductors, 2011, 32, 3.
    [6]. F. Chigondo. From Metallurgical-Grade to Solar-Grade Silicon: An Overview. Silicon, 2017, 10, 789-798.
    [7]. L. T. Khajavi, K. Morita, T. Yoshikawa, and M. Barati. Removal of Boron from Silicon by Solvent Refining Using Ferrosilicon Alloys. Metallurgical and Materials Transactions B, 2014, 46, 615-620.
    [8]. A. Morales-Acevedo. Thin film CdS/CdTe solar cells: Research perspectives. Solar Energy, 2006, 80, 675-681.
    [9]. A. Bosio, A. Romeo, D. Menoss, S. Mazzamuto, and N. Romeo. The second-generation of CdTe and CuInGaSe2 thin film PV modules. Crystal Research and Technology, 2011, 46, 857-864.
    [10]. N. Mufti, T. Amrillah, A. Taufiq, Sunaryono, Aripriharta, M. Diantoro, Zulhadjri, and H. Nur. Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 2020, 207, 1146-1157.
    [11]. D. Devadiga, M. Selvakumar, P. Shetty, and M. S. Santosh. Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. Journal of Electronic Materials, 2021, 50, 3187-3206.
    [12]. P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca. P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics. Solar Energy Materials and Solar Cells, 2006, 90, 2150-2158.
    [13]. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. H. Heeger. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science, 2007, 317, 222-225.
    [14]. L. Gao, J. Zhang, C. He, S. Shen, Y. Zhang, H. Liu, Q. Sun, and Y. Li. Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Science China Chemistry, 2013, 56, 997-1003.
    [15]. A. Listorti, B. O’Regan, and J. R. Durrant. Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials, 2011, 23, 3381-3399.
    [16]. T. M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale, and A. Di Carlo. Progress in flexible dye solar cell materials, processes and devices. Journal of Materials Chemistry A, 2014, 2, 10788-10817.
    [17]. Q. Tai, and X.-Z. Zhao. Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 13207-13218.
    [18]. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, and Z. Lin. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18, 155-162.
    [19]. C.-P. Lee, R. Y.-Y. Lin, L.-Y. Lin, C.-T. Li, T.-C. Chu, S.-S. Sun, J. Lin, and K.-C. Ho. Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances, 2015, 5, 23810-23825.
    [20]. S. Ahmad, E. Guillén, L. Kavan, M. Grätzel, and M. K. Nazeeruddin. Metal free sensitizer and catalyst for dye sensitized solar cells. Energy & Environmental Science, 2013, 6, 3439-3466.
    [21]. A. Swarnkar, V. K. Ravi, and A. Nag. Beyond colloidal cesium lead halide perovskite nanocrystals: Analogous metal halides and doping. ACS Energy Letters, 2017, 2, 1089-1098.
    [22]. Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, and W. Huang. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives. Advanced Materials, 2017, 29, 1605005.
    [23]. P. V. Kamat, J. Bisquert, and J. Buriak. Lead-free perovskite solar cells. ACS Energy Letters, 2017, 2, 904-905.
    [24]. E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey, and L. Dou. Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.
    [25]. Z. Yuan, Y. Shu, Y. Xin, and B. Ma. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Royal Society of Chemistry, 2016, 52, 3887-3890.
    [26]. G. Volonakis, A. A. Haghighirad, R. L. Milot, W. H. Sio, M. R. Filip, B. Wenger, M. B. Johnston, L. M. Herz, H. J. Snaith, and F. Giustino. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. The Journal of Physical Chemistry Letters, 2017, 8, 772-778.
    [27]. J. Zhou, Z. Xia, M. S. Molokeev, X. Zhang, D. Peng, and Q. Liu. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. Journal of Materials Chemistry A, 2017, 5, 15031-15037.
    [28]. Z. Xiao, K. Z. Du, W. Meng, J. Wang, D. B. Mitzi, and Y. Yan. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: A combined density functional theory and experimental study. Journal of the American Chemical Society, 2017, 139, 6054-6057.
    [29]. M. Retuerto, T. Emge, J. Hadermann, P. W. Stephens, M. R. Li, Z. P. Yin, M. Croft, A. Ignatov, S. J. Zhang, Z. Yuan, C. Jin, J. W. Simonson, M. C. Aronson, A. Pan, D. N. Basov, G. Kotliar, and M. Greenblatt. Synthesis and properties of charge-ordered thallium halide perovskites, Cs(Tl+)0.5(Tl3+)0.5X3 (X = F or Cl): Theoretical precursors for superconductivity? Chemistry of Materials, 2013, 25, 4071-4079.
    [30]. L. M. Schoop, L. Muchler, C. Felser, and R. J. Cava. Lone pair effect, structural distortions, and potential for superconductivity in Tl perovskites. Inorganic Chemistry, 2013, 52, 5479-5483.
    [31]. T. C. Jellicoe, J. M. Richter, H. F. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Bohm. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138, 2941-2944.
    [32]. A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang, W. Shen, X. Pan, P. Wang, and Z. Deng. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chemistry of Materials, 2016, 28, 8132-8140.
    [33]. A. Wang, Y. Guo, F. Muhammad, and Z. Deng. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability. Chemistry of Materials, 2017, 29, 6493-6501.
    [34]. D. S. Dolzhnikov, C. Wang, Y. Xu, M. G. Kanatzidis, and E. A. Weiss. Ligand-free, quantum-confined Cs2SnI6 perovskite nanocrystals. Chemistry of Materials, 2017, 29, 7901-7907.
    [35]. J. Cao, and F. Yan. Recent progress in tin-based perovskite solar cells. Energy & Environmental Science, 2021, 14, 1286-1325.
    [36]. X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, and M.G. Kanatzidis. From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials and Solar Cells, 2017, 159, 227-234.
    [37]. X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. Wang, and L. Han. Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy & Environmental Science, 2020, 13, 2896-2902.
    [38]. E. T. McClure, M. R. Ball, W. Windl, and P. M. Woodward. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chemistry of Materials, 2016, 28, 1348-1354.
    [39]. A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American Chemical Society, 2016, 138, 2138-2141.
    [40]. M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith, and F. Giustino. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. The Journal of Physical Chemistry Letters, 2016, 7, 2579-2585.
    [41]. M. Leng, Z. Chen, Y. Yang, Z. Li, K. Zeng, K. Li, G. Niu, Y. He, Q. Zhou, and J. Tang. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angewandte Chemie International Edition, 2016, 55, 15012-15016.
    [42]. M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu, S. Jin, and J. Tang. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2017, 1704446.
    [43]. B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng, S. Yang, Y. Li, T. Pullerits, W. Deng, and K. Han. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angewandte Chemie International Edition, 2017, 56, 12471-12475.
    [44]. R. Nie, R. R. Sumukam, S. H. Reddy, M. Banavoth, and S. I. Seok. Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy & Environmental Science, 2020, 13, 2363-2385.
    [45]. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials, 2015, 28, 284-292.
    [46]. Z. Liu, D. Liu, H. Chen, L. Ji, H. Zheng, Y. Gu, F. Wang, Z. Chen, and S. Li. Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH4SCN. Nanoscale Research Letters, 2019, 14, 304.
    [47]. F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, L. Zhang, and Y. Zhou. Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 1019-1027.
    [48]. K. Ahmad, M. Q. Khan, and H. Kim. Simulation and fabrication of all-inorganic antimony halide perovskite-like material based Pb-free perovskite solar cells. Optical Materials, 2022, 128, 112374.
    [49]. M. Liu, M. B. Johnston, and H. J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395-8.
    [50]. C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, and H. W. Lin. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials, 2014, 26, 6647-52.
    [51]. M. Kaltenbrunner, M. S. White, E. D Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer. Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications, 2012, 3, 770.
    [52]. A. Chilvery, S. Das, P. Guggilla, C. Brantley, and A. Sunda-Meya. A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17, 650-658.
    [53]. N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, and S. A. Haque. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 2017, 8, 15218.
    [54]. T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S. G. Mhaisalkar. Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 23829-23832.
    [55]. Y.-J. Li, T. Wu, L. Sun, R.-X. Yang, L. Jiang, P.-F. Cheng, Q.-Q. Hao, T.-J. Wang, R.-F. Lu, and W.-Q. Deng. Lead-free and stable antimony–silver-halide double perovskite (CH3NH3)2AgSbI6. RSC Advances, 2017, 7, 35175-35180.
    [56]. T. T. Tran, J. R. Panella, J. R. Chamorro, J. R. Morey, and T. M. McQueen. Designing indirect–direct bandgap transitions in double perovskites. Materials Horizons, 2017, 4, 688-693.
    [57]. B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, G. Hill, Y. Yan, and D.B. Mitzi. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chemistry of Materials, 2015, 27, 5622-5632.
    [58]. K. M. McCall, C. C. Stoumpos, S. S. Kostina, M. G. Kanatzidis, and B. W. Wessels. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chemistry of Materials, 2017, 29, 4129-4145.
    [59]. P. C. Harikesh, H. K. Mulmudi, B. Ghosh, T. W. Goh, Y. T. Teng, K. Thirumal, M. Lockrey, K. Weber, T. M. Koh, S. Li, S. Mhaisalkar, and N. Mathews. Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chemistry of Materials, 2016, 28, 7496-7504.
    [60]. J.-C. Hebig, I. Kühn, J. Flohre, and T. Kirchartz. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters, 2016, 1, 309-314.
    [61]. P. Cheng, T. Wu, J. Zhang, Y. Li, J. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. Han. (C6H5C2H4NH3)2GeI4: A layered two-dimensional perovskite with potential for photovoltaic applications. The Journal of Physical Chemistry Letters, 2017, 8, 4402-4406.
    [62]. N. Ito, M. A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, and S. Hayase. Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. Physical Chemistry Letters, 2018, 9, 1682-1688.
    [63]. F. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, C. H. Ng, Y. Zhang, Q. Shen, and S. Hayase. All-Inorganic CsPb1-xGexI2Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance. Angewandte Chemie International Edition 2018, 57, 12745-12749.
    [64]. H. Sun, K. Deng, J. Xiong, and L. Li. Graded Bandgap Perovskite with Intrinsic n–p Homojunction Expands Photon Harvesting Range and Enables All Transport Layer‐Free Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903347.
    [65]. G. M. Kim, A. Ishii, S. Öz, and T. Miyasaka. MACl‐Assisted Ge Doping of Pb‐Hybrid Perovskite: A Universal Route to Stabilize High Performance Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903299.
    [66]. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13, 460-466.
    [67]. Y. Peng, F. Li, Y. Wang, Y. Li, R. L. Z. Hoye, L. Feng, K. Xia, and V. Pecunia. Enhanced photoconversion efficiency in cesium-antimony-halide perovskite derivatives by tuning crystallographic dimensionality. Applied Materials Today, 2020, 19, 100637.
    [68]. M. M. Yao, C. H. Jiang, J. S. Yao, K. H. Wang, C. Chen, Y. C. Yin, B. S. Zhu, T. Chen, and H. B. Yao. General Synthesis of Lead-Free Metal Halide Perovskite Colloidal Nanocrystals in 1-Dodecanol. Inorganic Chemistry, 2019, 58, 11807-11818.
    [69]. H. D. Yin, and J. Zhai. Synthesis, characterizations and crystal structures of antimony(III) complexes with nitrogen-containing ligands. Inorganica Chimica Acta, 2009, 362, 339-345.
    [70]. B. Krishnan, S. Devasia, D. A. Avellaneda, M. I. Mendivil Palma, J. A. Agui Martinezlar, S. Shaji, and A. A. Ramachandran. Photosensitive antimony triiodide thin films by rapid iodization of chemically deposited antimony sulfide. Materials Research Bulletin, 2021, 142.
    [71]. J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11, 9294-9302.
    [72]. P.-P. Cheng, Y.-W. Zhang, J.-M. Liang, W.-Y. Tan, X. Chen, Y. Liu, and Y. Min. A facile route to surface passivation of both the positive and negative defects in perovskite solar cells via a self-organized passivation layer from fullerene. Solar Energy, 2019, 190, 264-271.
    [73]. S. Paramanik, A. Maiti, S. Chatterjee, and A. J. Pal. Large Resistive Switching and Artificial Synaptic Behaviors in Layered Cs3Sb2I9 Lead‐Free Perovskite Memory Devices. Advanced Electronic Materials, 2021, 8.
    [74]. N. Tabet, M. Faiz, N.M. Hamdan, and Z. Hussain. High resolution XPS study of oxide layers grown on Ge substrates. Surface Science, 2003, 523, 68-72.
    [75]. J. S. Hovis, R. J. Hamers, and C. M. Greenlief. Preparation of clean and atomically flat germanium(001) surfaces. Surface Science, 1999, 440, L815-L819.
    [76]. J. Xue, R. Wang, X. Chen, C. Yao, X. Jin, K.-L. Wang, H. Wenchao, H. Tianyi, Z. Yepin, Z. Yaxin, M. Dong, T. Shaun, L. Ruzhang, W. Zhao-Kui, Z. Kai, C. B. Matthew, Y. Yanfa, and Y. Yang. Reconfiguring the band-edge states of photovoltaicperovskites by conjugated organic cations. Science, 2021, 371, 636-640.
    [77]. A. Buyruk, D. Blatte, M. Gunther, M. A. Scheel, N. F. Hartmann, M. Doblinger, A. Weis, A. Hartschuh, P. Muller-Buschbaum, T. Bein, and T. Ameri. 1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI3 Perovskite Solar Cells. ACS Appl Mater Interfaces, 2021, 13, 32894-32905.
    [78]. K. S. Lee, H. K. Lee, D. H. Wang, N. G. Park, J. Y. Lee, O. O. Park, and J. H. Park. Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chemical Communications, 2010, 46, 4505-7.

    下載圖示
    QR CODE