簡易檢索 / 詳目顯示

研究生: 鍾一鳴
CHUNG-YI-MING
論文名稱: 超導光子晶體缺陷模態性質及應用
Properties and applications of the defect mode of superconducting photonic crystals
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 40
中文關鍵詞: 轉移矩陣法缺陷模態光子晶體超導體
英文關鍵詞: TMM, defect mode, photonic crystals, superconducting
論文種類: 學術論文
相關次數: 點閱:183下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在研究一維超導跟介電質的光子晶體能隙和週期性排列的缺陷模態性質及其應用。其中結構分別為 ABBA 和 CDABDC ,A為超導,B、C、D皆為介電質。
    第二章研究超導和介電質的光子晶體產生能隙擴大和產生的缺陷模態。我們藉由調整超導和介電材料的厚度和週期性來產生不同的能隙範圍和寬度,並且結合兩種寬度使得光子晶體侷限電磁波的範圍提升,也調整其範圍來產生缺陷模態,並利用轉移矩陣法(TMM),來研究其元件之特性,並利用透射率的分布情形去分析其缺陷模態之相關性質。
    第三章研究超導和介電材料的雙週期性結構缺陷模態,就是結構 CDABDC ,模擬結果指出如果改變光子晶體的排列且想要找出好的defect波形來做濾波的用途,材料的厚度是主要的參數。至於週期數並不影響defect發生的位置,但是影響defect的穿透率,所以我們可以使用調整週期來增加或減少通道的穿透率以配合所需。

    關鍵字 : 轉移矩陣法、缺陷模態、光子晶體、超導體

    第一章 4 1-1簡介 4 1-2超導體 5 1-3光子晶體 8 1-4光子晶體的缺陷 11 1-5光子晶體計算 12 1-6應用與研究方向 12 第二章 14 2-1簡介 14 2-2 TMM[轉移矩陣法] 15 2-3 超導和介電材料的第一能隙延伸結構與模擬分析 19 第三章 28 3-1簡介 28 3-2雙週期性光子晶體結構和基礎方程式 29 3-3模擬結果與討論 30 第四章 36 結論 36

    [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [3] J. D. Joannopoulos, R. D. Meade, J. N. Winn, “Photonic Crystals-Molding the Flow of Light,” Princeton University Press, 41, William Street, Princeton, New Jersey 08540, p. 6, 1995.
    [4] http://www.cljh.tc.edu.tw/movement/infocontest/cljh/94info/p /94ppt208.ppt
    [5]蝴蝶翅膀鱗粉,光子晶題專題報導,奈米科學網。http://nano.nchc.org.tw/photonic/photonic.php
    [6]K. M. Ho, C. T. Chart, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990).
    [7]Allen Taflove and S. C. Hagness, “Computational Electrodynamics: The
    Finite-Difference Time-Domain Method,” ArtechHouse Publishers; 2nd Bk & CD edition, 2000.
    [8]J. B. Pendry and A. MacKinnon, “Calculation ofphoton dispersion relations,” Phys. Rev. Lett. 69,2772 (1992).
    [9]欒丕綱、陳啓昌,《光子晶體—從蝴蝶翅膀到奈米光子學》,五南出版社(2005).
    [10]C.-J. Wu, Y.-H. Chung, B.-J. Syu, and T.-J. Yang: Prog. Electromagn. Res.
    2(2010) 81.
    [11]P. Halevi, J. A. Reyes-Avendano, and J. A. Reyes-Cervantes: Phys. Rev. E 73(2006) R040701.
    [12]C.-J. Wu, J.-J. Liao,and T.-W. Chang, J. Electromagn. Waves Appl. 24 (2010) 531.
    [13]H. Tian and J. Zi: Opt. Commun. 252 (2005) 321.
    [14]H.-C. Hung, C.-J. Wu, T.-J. Yang, and S.-J. Chang, IEEE Photonics J. 4 (2012) 903.
    [15]P. Halevi and F. Ramos-Mendieta, Phys. Rev. Lett. 85, 1875 (2000).
    [16]R. S. Muller and T. I. Kamins, Device Electronics for Integrated ircuits,2nd ed. (Wiley, New York, 1986).
    [17]R. A. Smith, Semiconductors ~Cambridge University Press, New York,1978!.
    [18]C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).
    [19]P. Yeh, Optical Waves in Layered Media, Wiley, New York (1988).
    [20]Yamada, H.;Gomyo, A.;Ushida, J.;Ishida, Satomi;Arakawa, Yasuhiko
    Tunable Optical Notch Filter Realized by Shifting the Photonic Bandgap in a Silicon Photonic Crystal Line-Defect Waveguide . IEEE photon Tech Lett , 2006, 18(24):2614
    [21]Omura, Y.; Tsuji, M.Optically tunable narrowband filter using defect-induced pass-band in photonic crystal waveguideSOI Conference,2003. IEEE International
    Conference ,2003 ,1 :117-118
    [22]Johnson, Kristina M.; Liu, Jian‐YuHigh-speed wavelength tunable liquid crystal filter Photonics Technology Letters,IEEE Photon Tech Lett , 1995 , 7(4): 379-381
    [23]Zawistowski, Z.J.; Dainese, M.; Cardin, Julien; Thylen, L.Widely tunable directional coupler filters with 1D photonic crystalProc 2008 Transparent Optical Networks International conference, 2005 , 1 :136

    下載圖示
    QR CODE