研究生: |
莊子昕 |
---|---|
論文名稱: |
以菲涅耳轉換及相位展開為基礎之數位全像顯微鏡在FPGA上之實現 DHM base on Fresnel transform and phase unwrapping |
指導教授: | 黃文吉 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 數位全像顯微鏡 、系統晶片設計 、FPGA 、菲涅耳轉換 、相位展開法則 |
論文種類: | 學術論文 |
相關次數: | 點閱:121 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在提出一硬體架構可以將數位全像片還原成原始影像相位圖,此硬體架構適用於嵌入式的數位全像顯微鏡(Digital Holographic Microscopy, DHM)系統,能夠加快運算來即時取得正確的還原全像影像。
本硬體架構採用皆以快速傅立葉轉換(FFT)為基礎的菲涅耳轉換搭配相位展開法則演算法來達到全像圖重建的目的。其中快速傅立葉轉換為高複雜度計算,對於一些需要即時顯示還原影像的應用往往會遇到很大的困難,因此本論文使用硬體電路架構來執行相關運算,以克服一般嵌入式系統上運算能力的限制,以縮短相位重建影像運算所需要花費的時間。另外,為克服硬體常見精確度不足問題,本硬體電路中大多使用IEEE 754浮點數格式來提升計算的精確度。
最後我們以現場可程式化邏輯閘陣列(Field Programmable Gate Array ,FPGA)為開發平台實現並實際測量硬體電路的資源消耗以及運算時間;實驗的結果顯示了本論文所提出的相位展開法則硬體架構能夠得到正確的還原結果,並且有效的降低還原相位圖運算所需要花費的時間以及擁有低硬體資源消耗的優點,因此適合使用於嵌入式的DHM 系統。
[1] E. Cuche, P. Marquet and C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel of-axis holograms, Appl. Opt., Vol. 38, pp. 6994–7001, 1999.
[2] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[3] Z. Li, Z. Bao, and Z. Suo, A joint image coregistration, phase noise suppression, and phase unwrapping method based on subspace projection for multibaseline InSAR systems, IEEE Trans. Geoscience and Remote Sensing, Vo. 45, pp.584-591, 2007.
[4] Loffeld, O. , Nies, H. , Knedlik, S. , Yu Wang , Phase Unwrapping for SAR Interferometry A Data Fusion Approach by Kalman Filtering, IEEE Trans. Geoscience and Remote Sensing, Jan 2008.
[5] S. Chavez, Q.S. Xiang, and L. An, Understanding Phase Maps in MRI: A New Cutline Phase Unwrapping Method, IEEE Trans. Medical Imaging, Vol. 21, pp.966-977, 2002.
[6] J.M. Bioucas-Dias and G. Valadao, Phase Unwrapping via Graph Cuts, IEEE Trans. Image Processing, Vol. 16, pp.684-697, 2007.
[7] D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software, 605 Third Avenue, New York, NY, 10158-0012: Wiley Inter-Science, 1998.
[8] V. Katkovnik, J. Astola, K. Egiazarian, ―Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data, IEEE Trans. Image Processing, Vol. 17, pp.833-846, 2008.
[9] M. Born & E. Wolf, Principles of Optics, 1999, Cambridge University Press, Cambridge
[10] H. Oberst, D. Kouznetsov, K. Shimizu, J. Fujita, F. Shimizu. Fresnel diffraction mirror for atomic wave, Physical Review Letters, 94, 013203 (2005).
[11] Light," by Richard C. MacLaurin, 1909, Columbia University Press
[12] M.D. Pritt and J.S. Shipman, Least-Squares Two-Dimensional Phase Unwrapping Using FFT’s, IEEE Trans. Geoscience and Remote Sensing, Vol. 32, pp.706-708, 1994.
[13] S. Hauck, and A. Dehon, Reconfigurable Computing, Morgan Kaufmann, 2008.
[14] Stratton, Julius Adams: Electromagnetic Theory, McGraw-Hill, 1941. (Reissued by Wiley IEEE Press, ISBN 978-0-470-13153-4).
[15] Sreeraman Rajan, Sichun Wang, Robert Inkol, Alain Joyal,“Efficient Approximations for the Arctangent Function,”Signal Processing Magazine, IEEE, volume 23 page 108-111 (2006)
[16] D. Parshall and M. K. Kim, Digital holographic microscopy with dual-wavelength phase unwrapping, Applied Optics, Vol. 45, pp.451-459, 2006.
[17] T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, Real-time digital holographic microscopy using the graphic processing unit, Opt. Exp. 16 (16), 11776-11781, 2008.
[18] Etienne Cuche et al, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38,6994-7001 (1999).
[19] U. Schnars and W. Juepner, “Digital Holography,” Springer (2005).
[20] E.N. Leith and J.Upatnieks,“Wavefront reconstruction with diffused illumination and three dimensional objects,"JOSA 54 ,1295-1301 (1964).
[21] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11,77–79 (1967).
[22] W. S. Haddad et al, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992)
[23] K. Boyer et al, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelength,” Nat. Med. 2, 939–941 (1996).
[24] P.A. Karasev, D.P. Campbell, and M.A. Richards, Obtaining a 35x Speedup in 2D Phase Unwrapping Using Commodity Graphics Processors, Proc. IEEE Radar Conference, pp. 574-578, April 2007.
[25] Y. C. Lin and C. J. Cheng, Determining the refractive index profile of micro optical elements using transflective digital holographic microscopy, J. Opt. 12, 115402, 2010.
[26] Y. C. Lin, C. J. Cheng and T.-C. Poon, Optical sectioning with a low coherence phase-shifting digital holographic microscope, Appl. Opt. 50(7), B25-B30, 2011.
[27] C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, High-resolution quantitative phase-contrast microscopy by digital holography, Optics Express, Vol. 13, pp.8693-8698, 2005.
[28] P. Mistry, S. Braganza, D. Kaeli, and M. Leeser, Accelerating Phase Unwrapping and Affine Transformations for Optical Quadrature Microscopy using CUDA, Proc. Second Workshop on General Purpose Processing on Graphics Processing Units, 2009.
[29] S. Braganza and M. Leeser, An efficient implementation of a phase unwrapping kernel on reconfigurable hardware, Proc. International Conference on Application Specific Systems, Architectures and Processors, pp.138-143, 2008.
[30] H. Calderon, C. Elena, and S. Vassiliadis, Soft Core Processors and Embedded Processing: a survey and analysis, Proc. Safe ProRisc Workshop, pp.483-488, 2005.
[31] Altera Corporation, FFT MegaCore Function User Guide, 2011.
[32] Altera Corporation, Floating Point Mega Function User Guide, 2011.
[33] Altera Corporation, NIOS II Processor Reference Handbook, 2011.
[34] Inverse trigonometric functions, http://en.wikipedia.org/wiki/Inverse_trigonometric_functions
[35] Digital holographic microscopy, http://en.wikipedia.org/wiki/Digital_holographic_microscopy
[36] Holography, http://en.wikipedia.org/wiki/Holography
[37] Discrete cosine transform, http://en.wikipedia.org/wiki/Discrete_cosine_transform