簡易檢索 / 詳目顯示

研究生: 徐智威
Hsu, Chih-Wei
論文名稱: 支鏈硝基共軛烯炔與鄰苯二胺之有機催化連鎖反應合成1,5-苯二氮平衍生物
Organocatalytic Cascade Synthesis of Functionalized 1,5-Benzodiazepine with o-Phenylenediamines and Branched Nitroenynes
指導教授: 陳焜銘
Chen, Kwun-Min
口試委員: 楊德芳
Yang, Te-Fang
杜玲嫻
Tu, Ling-Hsien
口試日期: 2021/07/23
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 138
中文關鍵詞: 有機催化合成連鎖反應共軛硝基烯炔苯二氮平重排反應
英文關鍵詞: organocatalytic synthesis, cascade reaction, conjugated 1,3-enyne, benzodiazepine, rearrangement reaction
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100875
論文種類: 學術論文
相關次數: 點閱:135下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 苯二氮平衍生物常用為精神類疾病藥物,目前有許多合成應用的例子已被探討。本篇研究以支鏈硝基共軛烯炔為起始物,與雙親核試劑的鄰苯二胺進行加成反應,在無金屬試劑的有機催化系統中,以乙腈為溶劑,反應生成苯二氮平。共軛烯炔為良好的親電子試劑,具有兩個親電子中心,可與雙親核試劑的鄰苯二胺進行加成反應,第一次共軛加成後,形成高活性中間產物丙二烯,可與親核試劑進行第二次的加成,形成七員雜環產物。此有機連鎖反應成功在反應中建構兩個碳氮鍵。在本篇研究十一個例子中,可以得到中等至良好的產率(48.8-75.5%),推測DABCO鹼及親核性試劑之雙功能催化,在反應中扮演重要的角色,使反應能夠在十分鐘內完成。
    另外,亦發現產物分子在鹼性條件下分離到重排反應產物。形成產物後,如加入DBU使得結構上的硝基與苯基掉換,生成重排產物。推測是七員環開環後,生成亞胺的中間體,硝基與氮上的氫形成氫鍵,促使苄基的碳與亞胺進行加成反應,形成熱力學穩定的重排產物。

    Benzodiazepine is used to be spirit drug. There have been many synthetic examples of benzodiazepine derivatives. In this research, the reaction was performed with versatile electrophile, conjugated 1,3-enyne, and o-phenylenediamine catalyzed by DABCO in acetonitrile at 40℃. Conjugated 1,3-enyne is a good electrophilic reagent with two electrophilic centers, which can undergo addition reaction with o-phenylenediamine of dinucleophile. After the first conjugate addition, a highly active intermediate allene is formed, which can be added with the other nucleophile to form a seven-member heterocyclic product. This organocascade reaction successfully constructed two carbon-nitrogen bonds in the reaction. In the eleven instance of the study, moderate to good yields can be obtained(48.8-75.5%). It is plausible that the bifunctional catalysis of DABCO, base and nucleophilic reagent, play an important role in the reaction, enabling completed within ten minutes.
    In addition, we founded the rearrangement product under base conditions. The nitro and phenyl group was exchanged, if DBU was added after the first reaction completed. We purpose that an intermediate was produced after the seven-membered ring opened . The nitro group forms a hydrogen bonding with the hydrogen on the nitrogen. That promotes the addition reaction between carbon of the benzyl group and the in-situ iminium to form thermodynamically rearrangement product.

    第一章 緒論 1 1-1 前言 1 1-2 有機催化 3 1-2-1 有機不對稱催化 4 1-2-1-1 有機共價催化 5 1-2-1-2 有機非共價催化 9 1-3有機連鎖反應 12 1-3-1 Domino Reaction 13 1-3-2 Cascade Reaction 14 1-3-3 Tandem Reaction 15 1-4 共軛烯炔之有機連鎖反應 17 1-5 苯二氮平類化合物合成與應用 25 1-6 研究動機 28 第二章 結果與討論 29 2-1 起始物共軛烯炔之製備 29 2-2 最佳化條件篩選 29 2-2-1溶劑篩選 30 2-2-2溫度篩選 32 2-2-3當量數及濃度 33 2-2-4 鹼當量數篩選 35 2-2-5 鹼性添加劑篩選 36 2-2-6掌性催化劑篩選 38 2-3 取代基效應 40 2-4 共軛烯炔與鄰苯胺化合物反應探討 42 2-5 苯二氮平產物結構分析 43 2-5-1 NMR光譜分析 43 2-5-2 X-RAY單晶繞射結構分析 45 2-6 反應機構探討 46 2-7 重排反應條件篩選 47 2-7-1 一鍋化條件篩選 47 2-7-2 逐步反應條件篩選 48 2-8 重排反應結構解析 49 2-8-1 重排反應NMR光譜解析 49 2-8-2 重排反應中間體NMR光譜解析 51 2-8-3 重排反應X-RAY單晶繞射結構解析 52 2-9 重排反應機構探討 53 2-10 結論 54 第三章 實驗流程與數據 55 3-1 分析儀器及基本實驗操作 55 3-2 實驗步驟 57 3-3 光譜數據 59 參考文獻 69 附錄一1H及13C-NMR光譜圖 75 附錄二X-RAY結構解析與數據 109

    1. Hajos, Z. G.; Parrish, D. R., Asymmetric synthesis of bicyclic intermediates of natural product chemistry. The Journal of Organic Chemistry 1974, 39 (12), 1615-1621.
    2. List, B.; Lerner, R. A.; Barbas, C. F., Proline-Catalyzed Direct Asymmetric Aldol Reactions. Journal of the American Chemical Society 2000, 122 (10), 2395-2396.
    3. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C., New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction. Journal of the American Chemical Society 2000, 122 (17), 4243-4244.
    4. Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A., A General Organocatalyst for Direct α-Functionalization of Aldehydes:  Stereoselective C−C, C−N, C−F, C−Br, and C−S Bond-Forming Reactions. Scope and Mechanistic Insights. Journal of the American Chemical Society 2005, 127 (51), 18296-18304.
    5. Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M., Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie International Edition 2005, 44 (27), 4212-4215.
    6. Sigman, M. S.; Jacobsen, E. N., Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries. Journal of the American Chemical Society 1998, 120 (19), 4901-4902.
    7. Okino, T.; Hoashi, Y.; Takemoto, Y., Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society 2003, 125 (42), 12672-12673.
    8. McCooey, S. H.; Connon, S. J., Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition 2005, 44 (39), 6367-6370.
    9. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K., Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid. Angewandte Chemie International Edition 2004, 43 (12), 1566-1568.
    10. Robinson, R., A synthesis of tropinone. Journal of the Chemical Society, Transactions 1917, 111, 762-768.
    11. Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S., Synthetic studies of huperzine A and its fluorinated analogues. 1. Novel asymmetric syntheses of an enantiomeric pair of huperzine A. Tetrahedron 1998, 54 (21), 5471-5484.
    12. Tietze, L. F., Domino Reactions in Organic Synthesis. Chemical Reviews 1996, 96 (1), 115-136.
    13. Bui, T.; Barbas, C. F., A proline-catalyzed asymmetric Robinson annulation reaction. Tetrahedron Letters 2000, 41 (36), 6951-6954.
    14. Pellissier, H., Recent Developments in Asymmetric Organocatalytic Domino Reactions. Advanced Synthesis & Catalysis 2012, 354 (2-3), 237-294.
    15. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G., Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 2006, 441 (7095), 861-863.
    16. Denmark, S. E.; Thorarensen, A., Tandem [4+2]/[3+2] Cycloadditions of Nitroalkenes. Chemical Reviews 1996, 96 (1), 137-166.
    17. Marchand, A. P.; Chou, T.-c., Base-promoted rearrangement of 2,3,5,6-tetrachloropentacyclo-[5.4.0.02,6.03,10.05,9]undecane-4,8,11-trione. Journal of the Chemical Society, Perkin Transactions 1 1973, 1948-1951.
    18. Kraus, G. A.; Taschner, M. J., Timed Diels-Alder Reactions. Journal of the American Chemical Society 1979, 102, 1974-1977.
    19. Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A., Enantioselective One-Pot Organocatalytic Michael Addition/Gold-Catalyzed Tandem Acetalization/Cyclization. Angewandte Chemie International Edition 2009, 48 (47), 8923-8926.
    20. Qian, H.; Yu, X.; Zhang, J.; Sun, J., Organocatalytic Enantioselective Synthesis of 2,3-Allenoates by Intermolecular Addition of Nitroalkanes to Activated Enynes. Journal of the American Chemical Society 2013, 135 (48), 18020-18023.
    21. Bharathiraja, G.; Sakthivel, S.; Sengoden, M.; Punniyamurthy, T., A Novel Tandem Sequence to Pyrrole Syntheses by 5-endo-dig Cyclization of 1,3-Enynes with Amines. Organic Letters 2013, 15 (19), 4996-4999.
    22. Bharathiraja, G.; Sathishkannan, G.; Punniyamurthy, T., Domino Synthesis of Tetrasubstituted Thiophenes from 1,3-Enynes with Mercaptoacetaldehyde. The Journal of Organic Chemistry 2016, 81 (6), 2670-2674.
    23. Hack, D.; Chauhan, P.; Deckers, K.; Mizutani, Y.; Raabe, G.; Enders, D., Combining silver- and organocatalysis: an enantioselective sequential catalytic approach towards pyrano-annulated pyrazoles. Chemical Communications 2015, 51 (12), 2266-2269.
    24. Li, W.; Yu, X.; Yue, Z.; Zhang, J., Asymmetric Construction of 2,3-Dihydroisoxazoles via an Organocatalytic Formal [3 + 2] Cycloaddition of Enynes with N-Hydroxylamines. Organic Letters 2016, 18 (16), 3972-3975.
    25. Xiao, Y.; Lin, J.-B.; Zhao, Y.-N.; Liu, J.-Y.; Xu, P.-F., Exploring the Reactivity of Nitro-Activated 1,3-Enynes in an Organocatalytic One-Pot, Three-Component Coupling Reaction: A Tandem Catalytic Approach to a Novel 3-Nitrochroman Scaffold. Organic Letters 2016, 18 (24), 6276-6279.
    26. Biswas, S.; Dagar, A.; Mobin, S. M.; Samanta, S., DABCO catalyzed domino Michael/hydroalkoxylation reaction involving α-alkynyl-β-aryl nitroolefins: excellent stereoselective access to dihydropyrano[3,2-c]chromenes, pyranonaphthoquinones and related heterocycles. Organic & Biomolecular Chemistry 2016, 14 (6), 1940-1945.
    27. Gurubrahamam, R.; Gao, B.-F.; Chen, Y. m.; Chan, Y.-T.; Tsai, M.-K.; Chen, K., Organocascade Synthesis of Annulated (Z)-2-Methylenepyrans: Nucleophilic Conjugate Addition of Hydroxycoumarins and Pyranone to Branched Nitro Enynes via Allene Formation/Oxa-Michael Cyclization/Alkene Isomerization Sequence. Organic Letters 2016, 18 (13), 3098-3101.
    28. Rana, N. K.; Jha, R. K.; Joshi, H.; Singh, V. K., Enantioselective access to tetrahydropyrano[2,3-c]pyrazoles via an organocatalytic domino Michael-hydroalkoxylation reaction. Tetrahedron Letters 2017, 58 (22), 2135-2139.
    29. Wu, C.-Y.; Chen, K., Organocatalytic Three-Component, One-Pot Reaction of Highly Substituted Tetrahydropyrano[2, 3-c]pyrazoles. ChemistrySelect 2018, 3 (12), 3500-3504.
    30. Huang, W.-Y.; Gurubrahamam, R.; Chen, K., An Unprecedented Organocascade Synthesis of Functionalized Bicyclic Nitrones from 2-Aminomalonate Derived Nucleophiles and 1-Nitro-1,3-Enynes via Allenes Formation and Subsequent Rearrangement. Advanced Synthesis & Catalysis 2019, 361 (1), 170-175.
    31. Kalyanam, N.; Manjunatha, S., Stereoselective bridging of tetrahydro-1,5-benzodiazepines. Heterocycles 1991, 32, 1131-1136.
    32. Kaoua, R.; Bennamane, N.; Bakhta, S.; Benadji, S.; Rabia, C.; Nedjar-Kolli, B., Synthesis of substituted 1,4-diazepines and 1,5-benzodiazepines using an efficient heteropolyacid-catalyzed procedure. Molecules 2010, 16 (1), 92-99.
    33. Chen, W.-Y.; Lu, J., Molecular-Iodine-Catalyzed One-Pot Synthesis of 1,5-Benzodiazepine Derivatives under Solvent-Free Conditions. Synlett 2005, 8, 1337-1339.
    34. Varala, R.; Enugala, R.; Nuvula, S.; Adapa, S. R., Ceric Ammonium Nitrate (CAN) Promoted Efficient Synthesis of 1,5-Benzodiazepine Derivatives. Synlett 2006, 7, 1009–1014.
    35. Kuo, C.-W.; More, S. V.; Yao, C.-F., NBS as an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives under mild conditions. Tetrahedron Letters 2006, 47 (48), 8523-8528.
    36. Xu, J.; Wei, J.; Bian, L.; Zhang, J.; Chen, J.; Deng, H.; Wu, X.; Zhang, H.; Cao, W., First one-pot stereoselective synthesis of cis-2,3-dihydro-4-perfluoroalkyl-1H-1,5-benzodiazepines via a catalyst-free three-component reaction. Chemical Communications 2011, 47 (12), 3607-3609.
    37. 彭健菱, organocascade reaction of dinuclephilie and nitroallyic acetate catalyzed by base. 國立臺灣師範大學碩士班論文 2019.
    38. Nair, D. K.; Sivanandan, S. T.; Kendrekar, P.; Namboothiri, I. N. N., Base and catalyst-free synthesis of nitrobenzodiazepines via a cascade N-nitroallylation-intramolecular aza-Michael addition involving o-phenylenediamines and nitroallylic acetates. Tetrahedron 2019, 75 (51), 130761.
    39. Ru Hwu, J.; Chieh Lin, C.; Hsien Chuang, S.; Yung King, K.; Su, T.-R.; Tsay, S.-C., Aminyl and iminyl radicals from arylhydrazones in the photo-induced DNA cleavage. Bioorganic & Medicinal Chemistry 2004, 12 (10), 2509-2515.
    40. Gour, J.; Gatadi, S.; Malasala, S.; Yaddanpudi, M. V.; Nanduri, S., A Microwave-Assisted SmI2-Catalyzed Direct N-Alkylation of Anilines with Alcohols. The Journal of Organic Chemistry 2019, 84 (11), 7488-7494.

    下載圖示
    QR CODE