簡易檢索 / 詳目顯示

研究生: 劉繕榜
Shan-Pang Liu
論文名稱: 國中數學資優生尺規作圖表現之探討
Investigation into the performance of junior high mathematically gifted students in straightedge and compass construction problems
指導教授: 譚克平
Tam, Hak-Ping
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 157頁
中文關鍵詞: 尺規作圖幾何證明圖形
英文關鍵詞: straightedge and compass construction, geometry proof, graph
論文種類: 學術論文
相關次數: 點閱:236下載:54
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討國中數學資優生在(一)解作圖題時會產生什麼錯誤類型;(二)先前解過相關問題對解作圖題有何影響;(三)解題時的模式以及輔助問題對學生解作圖題的助益;(四)作圖能力與其在解幾何證明題表現之間的相關性;(五)在作圖後證明中所發生的錯誤類型為何。本研究是從民國八十八年九月至八十九年二月間以幾何教學實驗方式進行,是在學校教師正式教幾何之前所進行的幾何課程,全程用十二次共三十六小時教學。教學內容是由一群數學教育研究者協同計畫而成的,內容包含全等三角形、相似三角形、尺規作圖、圓以及切線性質等知識。而本研究的研究對象乃是二十一位國中數學資優生,他們在小學階段時均曾代表台灣參與國際性數學競賽;至於教學方式則是以小組教學的方式進行。
    為了要搜集資料回答本研究所提出的問題,研究者設計了以下三項評量工具:一為教學前尺規作圖基本能力測驗;二是教學後作圖問題評量;三是晤談中作圖問題測驗。根據研究對象在教學前尺規作圖基本能力評量工具中的表現,本研究先將學生為區分高、中、低作圖能力者,以探討他們在教學期間解作圖問題時之表現。至於他們在教學後作圖問題上的表現,以及作圖後晤談的資料,則分別以量及質的方式進行資料分析。
    本研究發現學生在解作圖題時,部分資優生會犯兩類型錯誤:一是基本概念的錯誤;另一則是圖形的錯誤引導。當中圖形的錯誤引導又可分為「草圖的錯誤引導」、「給定圖形的錯誤引導」等。而研究者認為部分學生發生該兩類型錯誤可能原因是由於他們(1)存有迷思概念;(2)未能建立起邏輯的聯繫,學生「內在驗證」的能力不足。這推論是根據分析學生在純證明題表現以及其對圖形操作反應的資料而得。在晤談的過程當中亦引證出如果缺乏「內在驗證」的能力,則會影響他們的解題表現。
    除此之外,本研究中的學生在作圖問題上的表現、作圖後的證明以及解純證明題之表現統計上的顯著相關。例如學生在作圖問題上有好的表現,他們在解作圖後的證明,以及解純證明題時也會有好的表現等。並且高、中、低作圖能力的三組學生,彼此間在作圖後證明及純證明題之表現呈顯著差異,其中高作圖能力組的學生在幾何課程中會傾向有好的證明能力表現。另外亦發現學生在作圖後證明中表現出如下的弱點:有加入題目未說明的條件、循環論證以及只以圖式的證明而未提供文字說明等。
    研究結果另外顯示部分學生解作圖題會受到先前解過作圖題中的圖形影響。再者,學生所回憶的知識內容之不同,會在解作圖題彰顯出想法的個別差異。在本研究透過深入分析其中三位學生在晤談時的紀錄,並按照他們解題時的個別差異,整理出學生解作圖題時,約可分為三種類型,分別是「連結類型」、「操作和驗證類型」以及「臆測和推理類型」。其他的資料則顯示本研究所設計之輔助問題對解作圖問題有一定的幫助。
    本研究對教學方面提出一些建議。教師在教導尺規作圖單元時,可引導學生多利用畫草圖或動手操作的方式進行解題,並且加強學生的基本幾何知識以應用在解作圖題上,譬如圓與切線性質等。同時教師在教學上可針對部分作圖題設計安排一系列的輔助問題,並鼓勵學生嘗試解輔助問題以增加其解題經驗。對於已經存有迷思概念的學生,本研究建議採用認知衝突策略,並善用作圖後的證明以及加強學生的證明能力。
    至於日後的研究方向,由於本研究只針對數學的資優生,因此研究者建議以後能廣泛地收集一般學生在作圖表現、作圖後證明及純證明題目之表現,同時進行量與質的分析,藉以瞭解一般學生對於在作圖題的表現等等是否與數學資優生有別,也可為幫助一般學生學習尺規作圖提供寶貴的資料。另一方面,由於現階段對尺規作圖方面的實徵研究比較缺乏,建議以後能有更多的研究對尺規作圖單元作教學效益的研究,為日後幫助學生學習幾何知識、幾何證明以及尺規作圖時提供更深入具體的幫助。

    The main focus of this study is to find out (1) what kinds of mistakes will mathematically gifted students at junior high level commit while solving construction problems; (2) what kind of influence will previously solved related problems have on students solving construction problems; (3) which kind of models will they use to solve construction problems and the extent of help in the use of auxiliary problem; (4) what extent of relationship is there between students' construction ability and their performance in solving geometry proof problems, and (5) what kinds of mistakes will they make while proving their construction result. This research was carried out in the format of a teaching experiment that lasted from September 1999 to February 2000, right before the geometry units were formally taught in regular classes, the duration of the whole experiment amounted to 36 hours (12 times). The content materials were designed by a group of mathematics education researchers, and included such topics as the equilateral triangle, similar triangle, straightedge and compass construction, circle, tangent, the theorem of Ceva and other topics. The subjects of this research are 21 junior high mathematically gifted students. They had represented Taiwan to join a couple of international mathematical contests when they were in primary school. The teaching experiment was conducted in a small group discussion format.
    In order to collect data that would throw light on the research questions raised in study, three tools were specially design for this purpose. They were: (1) the basic straightedge and compass construction ability assessment tool administered before the teaching experiment; (2) the construction assessment tool administered during and after the teaching experiment; (3) specially selected problems accompanied with in-depth interview administered at the conclusion of the study. Base on their performance on the pretest, the students were classified as being of high, medium or low construction ability before they entered this study. Their subsequent performances were analyzed with reference to their basic ability. Their performances on the other two instruments were analyzed of solving construction problems after learning and the information by both qualitative and quantitative means.
    It was found that several of the gifted students encountered two kinds of difficulties when solving the construction problems; namely, the difficulties due to misconception, and difficulties due to misinterpretation of the diagrams. The latter could further be divided into the misinterpretation of the rough sketches, and the misinterpretation of the given diagrams. It was suggested that the reasons why some of the students encountered those difficulties were due to the misconception, that they
    had, and to their weakness in being able to mentally check their argument. The above observation was based on detailed analysis of their performance in solving pure proof problems and to their responses while attempting various operations on the diagrams. Subsequent interviews further substantiated the diagnosis mentioned above.
    Besides, it was found that there were statistically significant relationship among the students' performance in solving construction problems, in proving the validity of their constructed diagram and in solving pure proof problems. For example, if a student performed well on construction problems, he/she would, generally speaking, performed well in the other types of problems, and vice versa. It was also found that the high, medium, and low construction ability groups performed significant differently in proving the validity of their constructed diagrams and in solving pure proof problems. More specifically, the students in the high construction ability group performed better than the other groups in solving proof problems. Furthermore, it was found that some of the weaknesses as demonstrated by students in proving the validity of the constructed diagrams included adding in conditions not mentioned in the problems, tautology and in providing proofs without words.
    Another finding was that some students were influenced by the diagrams in the construction problems that they had previously solved. Moreover, the differences in what be students recalled would manifest into individual differences in the way they solved the construction problems. By analyzing the interviews of three particular students in detail, this research further suggested that there were at least three different approaches to solve construction problems. They were namely, recalling related problem approach, trial and verify approach, and conjecture and inference approach. Other data indicated that the auxiliary problems designed were helpful to some students in solving construction problems.
    Based on the above findings, it was suggested that while teaching straightedge and compass construction, teachers should encourage the students to draw sketch diagrams or try to operate with hands. He/she should strengthen the students knowledge in geometry that were applicable to solve construction problems. At the same time, the teacher could design a series of auxiliary problems that were related to some construction problems, and encouraged the students to solve them first so as to increase their problem solving experience. As for those students with misconception, it was suggested that teachers should adopt a cognitive conflict strategy, and to encourage students to always prove their constructed diagrams as a means to strengthen the students' ability in construction.
    As for the future research direction, it was suggested that more research should be directed towards studying the performances of students with various abilities on the kinds of problems discussed in this study. On the other hand, owing to the scarcity of empirical studies in straightedge and compass construction, it was suggested that more research should be conducted along this vein. The knowledge and experiment thus gathered should be of much value in improving students' ability to solve construction problems.

    第壹章 緒論…………………………………………………………1 第一節 研究動機………………………………………………1 第二節 研究目的………………………………………………5 第三節 研究問題………………………………………………6 第四節 名詞界定………………………………………………7 第五節 研究範圍與限制………………………………………9 第貳章 文獻探討………………………………………………………11 第一節 作圖………………………………………………………11 第二節 幾何證明及van Hiele模式………………………………20 第三節 心象的功能與心智模式…………………………………24 第參章 研究方法……………………………………………………33 第一節 研究設計………………………………………………34 第二節 研究對象………………………………………………35 第三節 研究資源與工具………………………………………36 第四節 研究步驟與過程………………………………………39 第五節 資料處理………………………………………………43 第肆章 資料分析………………………………………………………45 第一節 國中數學資優生作圖問題測驗表現之分析…………46 第二節 國中數學資優生解作圖發生錯誤的類型……………55 第三節 先前解過相關題目對作圖題表現的影響……………70 第四節 解題時的模式與輔助問題對作圖題表現的影響……82 第五節 作圖能力與證明表現之相關性分析…………………99 第六節 國中數學資優生解作圖後證明題發生錯誤的類型…111 第伍章 研究結果的討論與建議……………………………………119 第一節 研究結果的討論………………………………………119 第二節 建議……………………………………………………124 參考文獻……………………………………………………………129 附錄……………………………………………………………………135 附錄一 教學前尺規作圖基本能力測驗………………………135 附錄二 教學後作圖問題評量工具……………………………142 附錄三 晤談中作圖問題評量工具……………………………154 附錄四 S16在晤談中的第四個作圖問題中的表現及作法……157

    中文部份
    Bishop, A. J.(林宜臻譯,民80):數學的視覺面。科學教育月刊,145,2-7。
    Bishop, A. J.(譚寧君譯,民80):數學視覺化教育的文獻分析。科學教育月刊,145,8-17。
    Fetisov, A. I.(沈校本譯,民88):幾何學中的證明。台北市:九章。
    Kline, M.(張祖貴譯,民84):西方文化中的數學。台北市:九章。
    Polya, G.(1957,閻育蘇譯,民80):怎樣解題。台北市:九章。
    Polya, G.(1961,九章編輯部編譯,民84):數學發現。台北市:九章。
    世界數學簡史(一版)(民76)。新竹市:凡異。
    朱德祥編(1985):初等幾何研究。北京:高等教育出版社。
    李俐麗(1999):探討從基模的層面評估國中小學數學資優生的數學解題能力。台北市:國立台灣師範大學碩士論文。
    邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,8,1,1-34。
    探索數學的故事(二版)(民76)。新竹市:凡異。
    黃明瑩(2000):探討幾何問題中的情境及相關變因對解題影響之研究。台北市:國立台灣師範大學碩士論文。
    國民中學數學課本第四冊(民87)。國立編譯館主編。
    詹玉貞(2000):波利亞的解題步驟對國中數學資優生學習幾何證明成效之研究。台北市:國立台灣師範大學碩士論文。
    楊瑞智(民86):從歐氏幾何學作圖,淺談數學的發展。科學教育研究與發展,7,24-32。
    劉好(民88):小學幾何概念知教學─以中年級教材為例。高雄市政府公教人物資源發展中心編,新典範數學(pp.221-239)。高雄市:高雄市政府公教人物資源發展中心。
    鄭再添(民88a):圓的尺規作圖系列探討。科學教育月刊,217,25-29。
    鄭再添(民88b):圓的尺規作圖系列探討(續)。科學教育月刊,218,23-37。
    鄭毓信、梁貫成編著(1998):認知科學 建構主義與數學教育─數學學習心理學的現代研究。上海:上海教育出版社。
    英文部份
    Aichele, D. R.(1982). Interface:Euclidean Construction Tools and the Calculator. School Science and Mathematics, 82(8), 702-708.
    Antonietti, A.(1991). Why does mental visualization facilitate problem-solving?In R. H. Logie&M. Denis(Eds.), Mental Images in Human Cognition(pp.211-227). New York:North-Holland.
    Bell, A. W.(1976). A study of pupils' proof-explanations in mathematical situations. Educational Studies in Mathematics, 7, 23-40.
    Burger, W. F.,&Shaughnessy, J. M.(1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31-48.
    Cain, R. W.(1994). The Circle of Apollonius:A Discovery Activity. School Science and Mathematics, 94(2), 85-88.
    Cheng, P. W.,&Hoikoak, K. J.(1989). On the natural selection of reasoning theories. Cognition, 33, 285-313.
    Clements, D. H.,&Battista, M. T.(1992). Geometry and Spatial Reasoning. In D. A. Grouws(Ed.), Handbook of Research on Mathematics Teaching and Learning(pp.420-464). New York:Macmillan Publishing Company.
    Collins, A.,&Gentner, D.(1987). How people construct mental models. In D. Halland&N. Quinn(eds.), Cultural Models in Throught and Language. Cambridge:Cambridge University Press.
    Fawcett, H. P.(1938). The Nature of Proof. The National Council of Teachers of Mathematics.
    Finzer, W. F.,&Bennett, D. S.(1995). From Drawing to Construction with The Geometer's Sketchpad. The Mathematics Teacher, 88(5), 428-431.
    Fischbein, E.(1993).The theory of figural concepts. Educational Studies in Mathematics, 24, 139-162.
    Gagne, E. D., Yekovich, C. W.,&Yekovich, F. R.(1993). The Cognitive Psychology of School Learning(2nd Ed.).New York:Harper Collins College.
    Glenberg, A. M.,&Langston, W. E.(1992). Comprehension of illustrated text. Journal of Memory and Language, 31, 129-151.
    Gorman, M. W.(1996). Integrating "Geometer's Sketchpad" into a Geometry Course for Secondary Education Mathematics Majors.(ERIC Document Reproduction Service No. ED 405 817)
    Gutierrez, A.,&Jaime, A.(1998). On the Assement of the van Hiele Levels of Reasoning. Focus on Learning Problems in Mathematics, 20(2)&(3), 27-46.
    Hanna, G.(1998). Proof as Explanation in Geometry. Focus on Learning Problems in Mathematics, 20(2)&(3), 4-13.
    Hewson, P. W.(1996). Teaching for Conceptual Change. In D. F. Treagust& R. Duit&B. J. Fraser(Eds.), Improving Teaching and Learning in Science and Mathematics(pp.130-140). New York:Teachers College Press.
    Hoffer, A.(1981). Geometry is more than proof . Mathematics Teacher, 74, 11-18.
    Holyoak, R. J.&Spellman, B. A.(1993). Thinking. Annual Review of psychology, 44, 265-315.
    Johnson-Laird, P. N.(1983). Mental models. Cambridge, England:Cambridge University Press.
    Johnson-Laird, P. N.,& Byrne, R. M. J.(1991).Deduction. Hillsdale, NJ:Erlbaum.
    Johnson-Laird, P. N., Evans, J. S. B. T., Handley, S. J.,&Harper, C. N. J.(1999).Reasoning about necessity and possibility:a test of mental model theory of deduction. Journal of Experimental Psychology:Learning, Memory, and Cognition, 25(6), 1495-1513.
    Mansfield, H.,&Happs, J.(1996). Usimg Student Conceptions of Parallel Lines to Plan a Teaching Problem. In D. F. Treagust& R. Duit &B. J. Fraser(Eds.), Improving Teaching and Learning in Science and Mathematics(pp.120-130). New York:Teachers College Press.
    National Council of Teachers of Mathematics(1989).Curriculum and Evaluation Standards for School Mathematics.
    Newton, D. P.(1996). Causal situation in science:a model for supporting understanding. Learning and Instruction, 6(3), 201-217.
    Norman, D. A.(1983).Some observation on mental models. In A. L. Stevens&D. Gentner(Eds.), Mental Models(pp.7-14). Hillsdale, NJ:Lawrence Erlbaum Associates.
    Perkins, D. N.,&Simmon, R.(1988). Patterns of misunderstanding. Review of Educational Research, 58, 303-326.
    Posner, G. J., Strike, K. A., Hewson, P. W., &Gertzog, W. A. (1982). Accommodation of a scientific conception:Toward a theory of conceptual change. Science Education, 66, 211-227.
    Presmeg, N. C.(1986). Visualization in high-school mathematics. For the Learning of Mathematics, 6, 42-46.
    Schiddell, B. L.,&Ethington, C. A.(1994). Teaching of Geometry in the Eighth Grade Mathematics Curriculum:Findings from the Second International Mathematics Study. Focus on Learning Problems in Mathematics, 16(2), 51-61.
    Schoenfeld, A. H.(1985). Mathematical Problem Solving. Academic Press, INC.
    Schoenfeld, A. H.(1989). Explorations of students' mathematical belief and behavior. Journal for Research in Mathematics Education, 20(4), 338-355.
    Stenberg, R. J.,&Smith, E. E.(1989). The psychology of human thought. Cambridge:Cambridge University Press.
    Sternberg, R. J.(1996). Cognitive Psychology. Fort Worth:Harcourt Brace College Publishers.
    Strike, K. A.,&Posner, G. J.(1985). A conceptual change view of learning and understanding. IN L. H. T. West & A. L. Pines(Eds.), Cognitive structure and conceptual change, 211-231.
    Taylor, L.(1992). Exploring Geometry with The Geometer's Sketchpad. Arithmetic Teacher, 40, 187-191.
    Thomas, N. J. T.(1999). Mental Imagery. In E. N. Zalta(Ed.), The Stanford encyclopedia of philosophy(Online serial). URL http://plato.stanford.edu/entries/ mental-imagery/
    Usiskin, Z.(1987). Resolving the countnuing dilemmas in school geometry. In M. M. Lindquist & A. P. Schulte(Eds.), Learning and Teaching Geometry, K-12:1987 Yearbook(pp.17-31). Reston, VA:National Council of Teachers of Mathematics.
    Vinner, S.,&Kopelman, E.(1998). Is Symmetry an Intutive Basis for Proof in Euclidean Geometry?Focus on Learning Problems in Mathematics, 20(2)&(3), 14-26.
    Vladimirskii, G. A.(1971). An experimental verification of a method and system of exercises for developing spatial imagination. In J. Kilpatrick & I. Wirszup(Eds.), Soviet Studies in the psychology of learning and teaching mathematics, Vol. 5, (pp.57-117). Chicago, IL:University of Chicago Press.
    Wheatley, G. H.(1998). Imagery and Mathematics Learning. Focus on Learning Problems in Mathematics, 20(2)&(3), 65-77.
    Wilson, R. A.&Keil, F. C.(Eds.)(1999). The MIT Encyclopedia of the Cognitive Sciences. London:The MIT Press.

    QR CODE