簡易檢索 / 詳目顯示

研究生: 李玟諺
Lee, Wen-Yen
論文名稱: 基於 MPC 實現平衡控制的人形機器人騎乘電動機車運動規劃
Motion Planning for Humanoid Robot Riding E-Scooter Based on MPC Achieving Balance Control
指導教授: 包傑奇
Jacky Baltes
口試委員: 劉智誠
Liu, Chih-Cheng
陳瑄易
Chen, Syuan-Yi
包傑奇
Jacky Baltes
口試日期: 2024/07/01
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 49
英文關鍵詞: Humanoid Robots, Two-wheeled Vehicles, Classical Control, Robot Motion Planning, Neural Network
DOI URL: http://doi.org/10.6345/NTNU202400861
論文種類: 學術論文
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在台灣,機車是人們通勤的主要工具之一。與此同時,隨著人工智慧的快速進步,仿人機器人已經成為未來的趨勢。為了促進仿人機器人的發展,我們進行了研究以探索其可行性。在這項研究中,我們的目標是控制機器人騎機車並通過台灣的駕照考試。為了完成這項任務,我們需要解決騎機車的最基本問題——平衡。在我們的研究中,我們實施了模型預測控制(MPC)來進行自平衡測試。同時,我們將討論兩輪車的建模、MPC優化算法和機器人運動規劃的逆運動學。為了評估可行性,我們還使用了PID控制器進行比較。最後,我們展示了結果,證明選擇MPC作為我們主要方法的優勢。

In Taiwan, scooters are one of the primary tools for people to commute. Simultaneously, with the rapid advancements in artificial intelligence, humanoid robots have already become a trend for the future. To promote the development of humanoid robots, we have undertaken research to explore their feasibility. In this study, we aimed to control a robot to ride a scooter and pass the Taiwanese driving license test. To achieve this task, we needed to solve the most fundamental issue of riding a scooter—balance. In our research, we implemented Model Predictive Control (MPC) to conduct the self-balancing test. Simultaneously, we would discuss about modeling for the two-wheeled vehicle, MPC optimization algorithm and robot motion planning with inverse kinematic. To evaluate feasibility, we also used a PID controller for comparison. Finally, we present the results, demonstrating the advantages of choosing MPC as our primary method.

Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Aim 3 Chapter 2 Literature Review 4 2.1 Two Wheel Vehicle Dynamics 4 2.2 Model Predictive Control 7 2.2.1 Fundamentals of Model Predictive Control 7 2.2.2 Orthogonal Collocation on Finite Elements 8 2.2.3 Interior Point Line Search Filter Method 10 2.3 Inverse Kinematics 11 Chapter 3 Robot-Scooter System 14 3.1 The Robot-Scooter system 14 3.1.1 The Robot - Thormang 3 14 3.1.2 Two Wheel Vehicle - Gogoro VIVA 15 3.2 Radio Frequency Based Remote Control Emergency Brake 15 3.2.1 nRF24L01 Module 16 3.2.2 SPI Protocal 16 3.2.3 Remote Controller Design 17 Chapter 4 Methodology 20 4.1 Modeling 20 4.2 Robot-Scooter System Self Balancing Test with Model Predictive Control 23 4.3 Robot-Scooter System Self Balancing Test with PID control 25 4.4 Simulation - NVIDIA Isaac-Gym 25 4.5 SIM2REAL Test 27 Chapter 5 Result and Discussion 31 5.1 MPC Result in Different Models 31 5.2 MPC and PID Result Comparison 36 5.3 MPC and PID Result with External Force 38 5.4 MPC Result - Sim to Real 41 Chapter 6 Conclusion and Future Work 43 References 45

[1] K. Åström, R. Klein, and A. Lennartsson, “Bicycle dynamics and control: Adapted bicycles for education and research,” Control Systems, IEEE, vol. 25, pp. 26 – 47, 09 2005.
[2] “Model predictive control python toolbox.” Accessed: 2024-06-14.
[3] “Ministry of transportation and communications, r.o.c.” Accessed: 2024-06-14.
[4] R. Gerndt, D. Seifert, J. H. Baltes, S. Sadeghnejad, and S. Behnke, “Humanoid robots in soccer: Robots versus humans in robocup 2050,” IEEE Robotics & Automation Magazine, vol. 22, no. 3, pp. 147–154, 2015.
[5] S. Saeedvand, M. Jafari, H. S. Aghdasi, and J. Baltes, “A comprehensive survey on humanoid robot development,” The Knowledge Engineering Review, vol. 34, p. e20, 2019.
[6] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot,” Autonomous Robots, vol. 40, 07 2015.
[7] S. Saeedvand, H. Mandala, and J. Baltes, “Hierarchical deep reinforcement learning to drag heavy objects by adult-sized humanoid robot,” Applied Soft Computing, vol. 110, p. 107601, 2021.
[8] H. K.-X. Roux Ugo, Lee Wen-Yen, “Lstm based shape recognition for human robot interaction,”
[9] Y.-H. SUN, “Visual odometry for a humanoid robot riding an e-scooter,” 2023.
[10] G. Christmann, “Balance and steering control of a humanoid robot on an electric scooter,”2021.
[11] S. Singhania, I. Kageyama, and V. M. Karanam, “Study on low-speed stability of a motorcycle,” Applied Sciences, vol. 9, no. 11, 2019.45
[12] N. Hasan, L. Ling, Y. De-Cheng, and J. Yuan-Wei, “Modeling and simulation of the inverted pendulum control system,” in The 27th Chinese Control and Decision Conference (2015 CCDC), pp. 548–552, 2015.
[13] C. E. García, D. M. Prett, and M. Morari, “Model predictive control: Theory and practice —a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.
[14] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering perspective,” The International Journal of Advanced Manufacturing Technology, vol. 117, pp. 1327 – 1349, 2021.
[15] L. Biegler, “Nonlinear programming: Concepts, algorithms, and applications to chemical processes,” 2010.
[16] B. Zheng, “Ordinary differential equation and its application,” Highlights in Science, Engineering and Technology, vol. 72, pp. 645–651, 12 2023.
[17] V. Aboites, “Legendre polynomials: a simple methodology,” Journal of Physics: Conference Series, vol. 1221, p. 012035, 06 2019.
[18] P. F. Shustin and H. Avron, “Gauss-legendre features for gaussian process regression,”2021.
[19] S. Kumar and V. Gupta, “Collocation method with lagrange polynomials for variable-order time-fractional advection-diffusion problems,” Mathematical Methods in the Applied Sciences, vol. 47, 10 2023.
[20] A. Wächter and L. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 03 2006.
[21] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 877–900, 1999.
[22] A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming: Local convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 32–48, 2005. 46
[23] A. Aristidou and J. Lasenby, “Inverse kinematics: a review of existing techniques and introduction of a new fast iterative solver,” 09 2009.
[24] A. Ben-Israel, “A newton-raphson method for the solution of systems of equations,” Journal of Mathematical Analysis and Applications, vol. 3, pp. 94–98, 06 1965.
[25] S. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods,” IEEE Transactions in Robotics and Automation, vol. 17, 05 2004.
[26] “Sparkfun start something.” Accessed: 2024-05-14.

無法下載圖示 本全文未授權公開
QR CODE