簡易檢索 / 詳目顯示

研究生: 黃蕙蘭
Huei-Lan Huang
論文名稱: 水稻胞外擬抗菌蛋白的生化分析與生理表現之研究
Biochemical and physiological characterizations of a rice (Oryza sativa L.) apoplastic thaumatin-like protein
指導教授: 王玉麒
Wang, Yu-Chie
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 93
中文關鍵詞: PR蛋白質擬甜蛋白陽離子交換管柱水楊酸等焦電泳
英文關鍵詞: pathogenesis-related protein, thaumatin-like protein, Mono S, salicylic acid, IEF
論文種類: 學術論文
相關次數: 點閱:203下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在正常的生長條件下,懸浮培養的水稻細胞分泌多種蛋白質至液態Murshige-Skoog培養基中,其中,有一分子量約為29 kDa的蛋白質(簡稱Osm29蛋白質),其N端胺基酸序列與植物PR蛋白質( pathogenesis-related protein )中第五群 thaumatin-like protein具高度相似性。 本論文的研究目的即在於分離純化該蛋白質以進行其生化與抗菌特性的分析,同時也用以生產抗體探針,以探測該蛋白質的生理表現情形。
    在蛋白質純化方面,本研究者先利用硫酸銨鹽析(60-80%飽和度)以局部提高Osm29蛋白質的相對含量,再經Mono S陽離子交換管柱的分離過程後,可將Osm29蛋白質純化至幾近均質狀態。 經此一純化過程Osm29蛋白質的產量約佔培養液蛋白質的0.64%,而其純化倍數約為39倍。
    在生化特性分析方面,由於Osm29蛋白質可吸附於陽離子交換管柱,因此其結構表面可能帶有許多正電荷,而IEF電泳也顯示Osm29蛋白質多為pI>7.1的鹼性蛋白質,並具有五種等電點相異的同功蛋白,經peptide mapping分析的結果顯示,此五種同功蛋白的胺基酸序列因極為相近或完全相同。 而醣蛋白分析的結果則說明Osm29蛋白質並非為醣化的分泌性蛋白質。
    在抗菌分析方面,Osm29蛋白質對所測試的紋枯病菌、胡麻葉枯病菌以及葉鞘腐敗病菌並不具有明顯抑制菌絲生長的作用,不過在150 μg劑量下,Osm29蛋白質似乎對胡麻葉枯病菌有減緩其菌絲生長的現象。
    在生理表現分析方面,Osm29蛋白質會受到植物生長調節劑salicylic acid的處理以及受真菌感染而誘導分泌。 另外在水稻胚,及水稻幼苗的各器官內並無發現Osm29蛋白質的存在,推測Osm29蛋白質在植株體內的表現可能受病原菌感染誘導表現。
    在病原菌感染方面,Osm29蛋白質在水稻懸浮細胞受到葉鞘腐敗病菌感染時,會有大量被誘導分泌的現象。 不過,當以紋枯病菌感染時,Osm29蛋白質卻反而被抑制分泌,因此Osm29蛋白質似乎只能針對特定幾種真菌產生反應。

    ABSTRACT
    Under conditions of normal growth, suspension-cultured rice cells secreted some different proteins into liquid Murashige-Skoog medium. Among them, a protein with a monomeric mass of 29 kDa (designated Osm29 protein) has a N-termintal amino acid sequence homologous to some thaumatin-like proteins in plants. The purposes of this study were to purify the Osm29 protein and to produce antibodies of it . In addition, biochemical and physiological characterizations of the Osm29 protein were also conducted.
    With regard to purification of the Osm29 protein, a scheme using in combination of ammonium sulfate fractionation (60-80% saturation) and Mono S chromatography were developed. By using this protocal the Osm29 protein was purified to near homogeneity with a purification factor of 39-fold and the protein yield was about 0.64% of the total secreted proteins.
    With regard to the biochemical properties of Osm29 protein, it appears to be a non-glycosylated basic protein with 5 isomers varying in pI value. According to the results of peptide mapping, the amino acid sequence of the five isoforms were highly comparable between each other.
    With regard to the physiological properties of the Osm29 protein, it is present in the medium of cell culture, but not detectable in extracts of rice embryo and various organs of rice young seedlings. The secretion of Osm29 protein in culture medium can be rapidly induced by treatment of salicylic acid and by Sarocladium oryzae infection, but not by treatment of methyl jasmonic acid and Rhizoctonia solani infection.
    In an antifungal bioassay, Osm29 protein did not inhibit the growth of Rhizoctonia solani, Bipolaris oryzae, and Sarocladium oryzae, but at the dose of 150 μg, it exhibited growth-retarding effects on Bipolaris oryzae.

    目 錄 壹、緒論---------------------------------------------- 1 貳、研究材料與方法------------------------------------ 16 一、研究材料與細胞培養及水耕栽培---------------------- 16 A. 材料----------------------------------------------- 16 B. 水稻細胞懸浮培養及生長調節劑methyl jasmonate (MeJA) 與 salicylic acid (SA)的處理-------------------------- 16 1. 水稻細胞懸浮培養----------------------------------- 16 2. 植物生長調節劑的處理------------------------------- 16 C. 懸浮培養細胞的真菌感染----------------------------- 17 D. 水稻植株的水耕栽培--------------------------------- 17 二、細胞培養液內蛋白質之收集及Osm 29 分泌性蛋白質之分離及純化 -------------------------------------------------------18 A. 培養液之收集--------------------------------------- 18 B. 培養液蛋白質之初步分離----------------------------- 18 1. 硫酸銨沈澱(鹽析)--------------------------------- 18 2. 透析----------------------------------------------- 19 C. 蛋白質之純化--------------------------------------- 19 1. FPLC之操作流程------------------------------------- 20 2. 純化後Osm 29蛋白質之收集--------------------------- 21 三、蛋白質的分析-------------------------------------- 21 A. 蛋白質的萃取--------------------------------------- 21 B. 蛋白質的電泳分析----------------------------------- 22 C. 蛋白質的銀染--------------------------------------- 22 D. Coomassie brilliant blue 的染色-------------------- 23 E. 蛋白質的定量--------------------------------------- 23 F. 醣蛋白的膠體染色----------------------------------- 24 G. Osm29蛋白質的電泳釋出 (electroelution)------------- 25 H. 等焦電泳 ( isoelectric focusing gel electrophoresis ) 分析 -------------------------------------------------------26 I. 免疫轉漬 (immunoblotting) 試驗--------------------- 27 四、Osm 29 蛋白質的peptide mapping 分析--------------- 28 A. 蛋白質切割藥劑的種類------------------------------- 28 B. Peptide mapping 分析------------------------------- 29 五、Osm 29 蛋白質微定序分析 (Microsequencing)--------- 29 A. 微定序Mono S管柱所純化之Osm29蛋白質---------------- 29 B. 微定序經切割處理後之Osm29蛋白質-------------------- 30 六、Osm29 蛋白質多株抗體之製備------------------------ 31 A. 免疫注射------------------------------------------- 31 1. 施打Mono S管柱所純化之Osm29蛋白質------------------ 31 2. 施打電泳分離所純化之Osm29 蛋白質------------------- 31 B. 血清之分離----------------------------------------- 32 七、Osm29 蛋白質之抗菌效能分析------------------------ 32 A. PDA (Potato dextrose agar) 培養基的製備------------ 32 B. 菌株的種類(為台中霧峰農試所所提供)--------------- 33 C. 抗菌效能分析--------------------------------------- 33 參、研究結果------------------------------------------ 34 Osm29蛋白質的鑑定------------------------------------- 34 Osm29蛋白質的差異性硫酸銨鹽析------------------------- 35 Osm29蛋白質的離子交換管柱純化------------------------- 36 Osm29蛋白質的純化係數--------------------------------- 37 Osm29蛋白質於培養液中的累積測定----------------------- 38 Osm29蛋白質之多株抗體生產與其效價測定(titer determination) -------------------------------------------------------38 醣蛋白的的測定---------------------------------------- 39 Osm29蛋白質的等焦電泳分析----------------------------- 40 Peptide mapping分析----------------------------------- 40 植物生長調節劑的影響---------------------------------- 41 —MeJA的處理------------------------------------------ 41 -SA處理---------------------------------------------- 41 -Osm29蛋白質於水稻植株內的表現情形------------------- 43 -Osm29蛋白質於真菌感染水稻細胞時的表現情形----------- 43 Osm29蛋白質抗菌活性的測定----------------------------- 44 肆、討論 ----------------------------------------------45 Osm29蛋白質的鑑定------------------------------------- 45 Osm29蛋白質的分離與純化------------------------------- 44 Osm29蛋白質之多株抗體生產與其效價測定----------------- 48 Osm29蛋白質之物化性質分析----------------------------- 50 Osm29蛋白質受植物生長調節劑處理的表現分析------------- 52 Osm29蛋白質於水稻不同發育時期的器官部位之表現分析----- 54 Osm29蛋白質受病原菌誘導的表現分析--------------------- 55 Osm29蛋白質的抗菌活性測定----------------------------- 55 總結-------------------------------------------------- 56 伍、參考文獻------------------------------------------ 57 附錄一、 Murashige-Skoog medium----------------------- 91 附錄二、Kimura B solution----------------------------- 92 附錄三、FPLC program---------------------------------- 93 附錄四、V-7 valves------------------------------------ 93 圖 表 次 圖一、硫酸銨 (0-80%) 沈澱的培養液蛋白質經Mono S管柱分離的結果---------------------------------70 圖二、Rice Osm29 蛋白質與四種植物的thaumatin-like protein之N端序列 比對情形-------------------71 圖三、培養液蛋白質的硫酸銨鹽析沈澱結果---------------------------------72 圖四、硫酸銨 (60-80%) 沈澱的培養液蛋白質經Mono S管柱純化的結果---------------------------------73 圖五、水稻細胞培養液蛋白質經Mono Q管柱純化的結果---------------------------------74 圖六、硫酸銨(60-80%)沈澱的培養液蛋白質在pH 6.8的條件下,以Mono S管柱分離純化的結果-----------75 圖七、硫酸銨(60-80%)沈澱的培養液蛋白質在pH 4.6的條件下,以Mono S管柱分離純化的結果-----------76 圖八、將局部純化之培養液蛋白質 [圖四(b), fr. 28, 29] 再經Mono S管柱(pH 4.6)純化之結果----------77 圖九、Osm29蛋白質在培養液中的累積變化情形------------78 圖十、Osm29蛋白質多株抗體的製作流程圖----------------79 圖十一、第一次Osm29蛋白質之抗血清的效價與專一性分析的結果----80 圖十二、第二次Osm29蛋白質之抗血清的效價與專一性分析的結果----81 圖十三、Osm29蛋白質的醣化分析結果--------------------82 圖十四、Osm29蛋白質的等焦電泳分析--------------------83 圖十五、Osm29蛋白質的peptide mapping分析-------------84 圖十六、MeJA處理對培養液中Osm29蛋白質含量的影響------85 圖十七、SA處理(1 ml細胞)對培養液中Osm29蛋白質含量的影響----86 圖十八、SA處理對培養液中Osm29蛋白質含量的影響--------87 圖十九、SA處理 (5 ml細胞) 對培養液中Osm29蛋白質含量於短時間內的 影響-------------------------------------------------88 圖二十、Osm29蛋白質於水稻植株內的表現情形------------89 圖二十一、懸浮培養細胞受葉鞘腐敗病菌感染的Osm29蛋白質之表現--90 圖二十二、懸浮培養細胞受紋枯病菌感染的Osm29蛋白質之表現------91 表一、Osm29蛋白質的純化結果--------------------------77

    伍、參考文獻
    Abad LR, D’Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK,
    Niu X, Singh NK, Hasegawa PM, Bressan RA (1996)
    Antifungal activity of tobacco osmotin has specificity
    and involves plasma membrane permeabilization. Plant Sci
    118: 11-23
    Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K,
    Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E, Ryals
    J (1993) Increased tolerance to two oomycete pathogens in
    transgenic tobacco expressing pathogenesis-related
    protein la. Proc Natl Acad Sci USA 90:7327-7331
    Antoniw JF, White RF, Barbara DJ, Jones D, Longley A (1985)
    The detection of PR(1b) protein and TMV by ELISA in
    systemic and localized virus infections of tobacco. Plant
    Mol Biol 4: 55-60
    Barre A, Peumans WJ, Menu-Bouaouiche L, Van Damme EJM, May
    GD,Herrera AF, Leuven FV, Rouge P (2000) Purification
    and structural analysis of an abundant thaumatin-like
    protein from ripe banana fruit. Planta 211: 791-799
    Batalia MA, Monzingo AF, Ernst S, Roberts W, Robertus JD
    (1996) The crystal structure of the antifungal protein
    zeamatin , a member of the thaumatin-like, PR-5 protein
    family. Nat Struct Biol 3: 19-23
    Bowles DJ (1990) Defense-related proteins in higher plants.
    Annu Rev Biochem 59: 873-907
    Bray EA (1993) Molecular responses to water deficit. Plant
    Physiol 103: 1035-1040
    Bradford MM (1976) A rapid and sensitive method for the
    quantitation of microgram quantities of protein utilizing
    the principle of protein-dye binding. Anal Biochem 72:
    248-254
    Brederode FT, Linthorst HJM, Bol JF (1991) Differential
    induction of acquired resistance and PR gene expression
    in tobacco by virus infection,ethephon treatment, UV
    light and wounding. Plant Mol Biol 17: 1117-1125
    Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant
    defensins : novel antimicrobial peptides as components of
    the host defense system. Plant Physiol 108: 1353-1358
    Broglie K, Chet l, Holliday M, Cressman R, Biddle P, Knowlton
    S, Mauvis CJ, Broglie R (1991) Transgenic plants with
    enhanced resistance to the fungal pathogen Rhizoctonia
    solani. Science 254: 1194-1197
    Broglie KE, Biddle P, Cressman R, Broglie R (1989) Functional
    analysis of DNA sequences responsible for ethylene
    regulation of a bean chitinase gene in transgenic
    tobacco. Plant Cell 1: 599-607
    Bryngelsson T, Green B (1989) Characterization of a
    pathogenesis-related,thaumatin-like protein isolated from
    barley challenged with an incompatible race of mildew.
    Physiol Mol Plant Pathol 35: 45-52
    Caldwell J, Markley JL (1999) Structure-function
    relationships in sweet-tasting proteins. J of The
    Chemical Society of Pakistan 21: 268-280
    Capelli N, Diogon T, Greppin H, Simon P (1997) Isolation and
    characterization of a cDNA clone encoding an osmotin-like
    protein from Arabidopisis thaliana. Gene 191: 51-56
    Chang XY, Narasimhan PFL, Raghothama ML, Hasegawa KG, Bressan
    PM (1994) Plant defense genes are synergistically induced
    by ethylene and methyl jasmonate. Plant Cell 6: 1077-1085
    Chen WP, Chen PD, Liu DJ, Kynast R, Friebe , Velazhahan R,
    Muthukrishnan S, Gill BS (1999) Development of wheat scab
    symptoms is delayed in transgenic wheat plants that
    constitutively express a rice thaumatin-like protein
    gene. Theor Appl Genet 99: 755-760
    Cheong NE, Choi YO, Kim WY, Kim SC, Cho MJ, Lee SY (1997)
    Purification of an antifungal PR-5 protein from flower
    buds of Brassica campestris and cloning of its gene.
    Physiol Plant 101: 583-590
    Cornelissen BJC, Hooft van Huijsduijnen RAM, Bol JF (1986) A
    tobacco modaic virus-induced tobacco protein is
    homologous to the sweet tasting protein thaumatin. Nature
    321: 531-532
    Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS,
    Muthukrishnan S, Datta SK (1999) Over-expression of the
    cloned rice thaumatin-like protein (PR-5) gene in
    transgenic rice plants enhances environmental friendly
    resistance to Rhizoctonia solani causing sheath bright
    disease. Theor Appl Genet 98 : 1138-1145
    Datta N, Cashmore AR (1989) Binding of a pea nuclear protein
    to promoters of certain photoregulated genes is modulated
    by phosphorylation. Plant Cell 1:1069-1077
    del Campillo E, Lewis LN (1992) Identification and kinetics
    of accumulation of proteins induced by ethylene in bean
    abscission zones. Plant Physiol 98:955-961
    De Wit PJGM (1997) Pathogen avirulence and plant resistance :
    a key role for recognition. Trends Plant Sci 2: 452-458
    Durner J, Shah J, Klessig DF (1997) Salicylic acid and
    disease resistance in plants. Trends Plant Sci 2: 266-274
    Enjedi AJ, Yalpani N, Paul S, Raskin I (1992) Signal
    molecules in systemic plant resistance to pathogens and
    pests. Cell 70 : 879-886
    Eyal Y, Meller Y, Lev-Yadun S, Fluhr R (1993) A basic-type PR-
    1 promoter directs ethylene responsiveness, vascular and
    abscission zone-specific expression. Plant J 4: 225-234
    Filippone MP, Ricci JD, de Marchese AM, Farias RN, Castagnaro
    A (1999) Isolation and purification of a 316 Da preformed
    compound from strawberry leaves active against plant
    pathogens. FEBS Lett 459: 115-118
    Fils-Lycanon BR, Wiersma PA, Eastwell KC, Sautiere P (1996) A
    cherry protein and its gene , abundantly expressed in
    ripening fruit , have been identified as thaumatin-like.
    Plant Physiol 111: 269-273
    Friedrich L, Moyer M, Ward E, Ryals J (1991) Pathogenesis-
    related protein 4 is structurally homologous to the
    carboxy-terminal domains of hevein , Win-1 and Win-2. Mol
    Gen Genet 230: 113-119
    Fukuda Y, Ohme M, Shinshi H (1991) Gene structure and
    expression of a tobacco endochitinase gene in suspension
    cultured tobacco cells. Plant Mol Biol 16: 1-10
    Garcia-Casado G, Collada C, Allona I, Soto A, Casado R,
    Rodriguez-Cerezo E, Gomez L, Aragoncillo C (2000)
    Characterization of an apoplastic basic thaumatin-like
    protein from recalcitrant chestnut seeds. Physiol Plant
    110: 172-180
    Gianinazzi S, Martin C, Vallee JC (1970) Hypersensibilite
    aux virus,temperatures et proteines solubles chez le
    Nicotiana Xanthi nc. Apparition de nouvelles
    macromolecules lors de la repression de la synthese
    virale. C R Acad Sci Paris D 270: 2383-2386
    Graham JS, Burkhart W, Xiong J, Gillikin JW (1992) Complete
    amino acid sequence of soybean leaf P21. Plant Physiol
    98: 163-165
    Grenier J, Potvin C, Trudel J, Asselin A (1999) Some
    thaumatin-like proteins hydrolyse polymeric β-1, 3-
    glucans. Plant J 19: 473-480
    Hannond-Kosack KE, Jones JDG (1996) Resistance gene-dependent
    plant defense responses. Plant Cell 8: 1773-1791
    Hart CM, Nagy F, Meins F Jr (1993) A 61 bp enhancer element
    of the tobacc β-1, 3-glucanase B gene interacts with one
    or more regulated nuclear proteins. Plant Mol Biol 21:
    121-131
    Heath MC (2000) Nonhost resistance and nonspecific plant
    defenses. Curr Opin Plant Biol 3: 315-319
    Hejgaard J, Jacobsen S, Svendsen I (1991) Two antifungal
    thaumatin-like proteins from barley grain. Fed Eur
    Biochem Soc 291: 127-131
    Hennig J, Dewey RE, Cutt JR, Klessig DF (1993) Pathogen,
    salicylic acid and developmental dependent expression of
    a β-1, 3-glucanase/GUS gene fusion in transgenic tobacco
    plants. Plant J 4: 481-493
    Huynh QK, Borgmeyer JR, Zobel JF (1992) Isolation and
    characterization of a 22 kDa protein with antifungal
    properties from maize seeds.Biochem Biophys Res Commun
    182: 1-5
    Hu X, Reddy ASN (1997) Cloning and expression of a PR5-like
    protein from Aradidopsis: inhibition of fungal growth by
    bacterially expressed protein. Plant Mol Biol 34: 949-959
    Inschlag C, Hoffmann-Sommergruber K, Oŕiordain G, Ahorn H,
    Ebner C, Scheiner O, Breiteneder H (1998) Biochemical
    characterization of Pru a 2, a 23-kDa thaumatin-like
    protein representing a potential major allergen in cherry
    (Prunus avium). International Archives Of Allergy And
    Immunology 116: 22-28
    Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R,
    Schell J, Maas C (1995) Enhanced quantitative resistance
    against fungal disease by combinatorial expression of
    different barley antifungal proteins in transgenic
    tobacco. Plant J 8: 97-109
    Kauffmann S, Legrand M, Fritig B (1990) Isolation and
    characterization of six pathogenesis-related (PR)
    proteins of Samsun NN tobacco. Plant Mol Biol 14: 381-390
    King GJ, Turner VA, Hussey CE, Syrkin WE, Lee SM (1988)
    Isolation and characterization of a tomato cDNA clone
    which codes for a salt-induced protein. Plant Mol Biol
    10: 401-412
    Kitajima S, Sato F (1999) Plant pathogenesis-related proteins
    : molecular mechanisms of gene expression and protein
    function. J Biochem 125:1-8
    Klement Z (1982) Hypersensitivity. In phytopathogenic
    prokaryotes, volume 2 (Mount MS and Lacy GH) New York :
    Academic Press, pp. 149-177
    Koiwa H, Kato H, Nakatsu T, Oda J, Yamada Y, Sato F (1997)
    Purification and characterization of tobacco pathogenesis-
    related protein PR-5d, an antifungal thaumatin-like
    protein. Plant Cell Physiol 38: 783-791
    Koiwa H, Kato H, Nakatsu T, Oda J, Yamada Y, Sato F (1999)
    Crystal structure of tobacco PR-5d protein at 1.8
    angstrom resolution reveals a conserved acidic cleft
    structure in antifungal thaumatin-like proteins. J of Mol
    Biol 286: 1137-1145
    Koiwa H, Sato F, Yama Y (1994) Characterization of
    accumulation of tobacco PR-5 proteins by IEF-immunoblot
    analysis. Plant Cell Physiol 35: 821-827
    Kombrink E, Somssich IE (1995) Defense responses of plants to
    pathogens.Adv Bot Res 21: 1-34
    Kuboyama T (1998) A novel thaumatin-like protein gene of
    tobacco is specifically expressed in the transmitting
    tissue of stigma and style. Sexual Plant Repro 11: 251-256
    Kuc J (1982) Induced immunity to plant disease. BioScience
    32: 854-860
    Kuwabara C, Arakawa K, Yoshida S (1999) Abscisic acid-induced
    secretory proteins in suspension-cultured cells of winter
    wheat. Plant Cell Physiol 40: 184-191
    Laemmli UK (1970) Cleavage of structural proteins during
    assembly of the head of bacteriophage T4. Nature 227: 680-
    685
    Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and
    transduction mechanism for activation of plant defenses
    against microbial attack. Cell 56: 215-224
    LaRosa PH, Chen Z, Nelson DE, Singh NK, Hasegawa PM, Bressan
    RA (1992) Osmotin gene expression is
    posttranscriptionally regulated. Plant Physiol 100: 409-
    415
    Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin
    overexpression in potato delays development of disease
    symptoms. Proc Natl Acad Sci USA 91: 1888-1892
    Lynch PT , Finch RP , Davey MR (1991) Rice tissue culture and
    its Application. In G. S. Khush, G. H. Toenniessen, eds,
    Rice Biotechnology. C. A. B. International, Wallingford,
    Oxon, pp 135-155
    Malamy J, Klessing DF (1992) Salicylic acid and plant disease
    resistance . Plant J 2: 643-654
    Malehorn DE, Borgmeyer JR, Smith CE, Shah DM (1994)
    Characterization and expression of an antifungal Zeamatin-
    like protein (Zlp) gene from Zea mays . Plant Physiol 106:
    1471-1481
    Mason HS, DeWald DB, Creelman RA, Mullet JE (1992)
    Coregulation of soybean vegetative storage protein gene
    expression by methyl jasmonate and soluble sugars. Plant
    Physiol 98: 859-867
    McDowell JM, Dangl JL (2000) Signal transduction in the plant
    immune response. Trends Biochem Sci 25: 79-82
    Mehdy MC (1994) Active oxygen species in plant defense
    against pathogens. Plant Physiol 105: 467-47
    Melchers LS, Stuiver MH (2000) Novel genes for disease-
    resistance breeding. Curr Opin Plant Biol 3:147-152
    Meller Y, Sessa G, Eyal Y, Fluhr R (1993) DNA-protein
    interactions on a cis-DNA element essential for ethylene
    regulation. Plant Mol Biol 23: 453-463
    Murillo I, Cavallarin L, Segundo BS (1999) Cytology of
    infection of maize seedlings by Fusarium moniliforme and
    immunolocalization of the pathogenesis-related PRms
    protein. Biochem Cell Biol 89:737-747
    Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-
    Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, β-1,3-
    glucanase, osmotin, and extensin are expressed in tobacco
    explants during flower formation. Plant Cell 2: 673-684
    Nelson DE, Raghothama KG, Singh NK, Hasegawa PM, Bressan RA
    (1992) Analysis of structure and transcriptional
    activation of an osmotin gene. Plant Molecular Biology
    19: 577-588
    Neuhaus JM, Ahl-Goy P, Hinz U, Flores S, Meins F (1991) High-
    level expression of a tobacco chitinase gene in Nicotiana
    sylvestris;susceptibility of transgenic plants to
    Cercospora nicotianae infection. Plant Mol 16: 141-151
    Niederman T, Genete Y, Bruyere T, Gees R, Stinzi A, Legrand
    M, Fritig B, Mosinger E (1995) Pathogenesis-related PR-1
    proteins are antifungal. Plant Physiol 108: 17-27
    Nurnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K,
    Scheel D (1994) High affinity binding of a fungal
    oligopeptide elicitor to parsley plasma membranes
    triggers multiple defenses. Cell 78: 449-460
    Ogata C, Gordon P, de Vos A, Kim SH (1992) Crystal structure
    of a sweet tasting protein thaumatin I, at 1.65 A
    resolution. J Mol Biol 228: 893-908
    Ohashi Y, Matsuoka M (1987) lnduction and secretion of
    pathogenesis-related proteins by salicylate or plant
    hormones in tobacco suspension cultures. Plant Cell
    Physiol 28: 573-580
    Oh DH, Song KJ, Shin YU, Chung WI (2000) Isolation of a cDNA
    encoding a 31-kDa, pathogenesis-related 5/thaumatin-like
    (PR-5/TL) protein abundantly expressed in apple fruit
    (Malus dimestica cv. Fuji). Biosci Biotechnol Biochem 64:
    355-362
    Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA
    binding proteins that interact with an ethylene-
    responsive element. Plant Cell 7: 173-182
    Pierpoint WS, Jackson PJ, Evans RM (1990) The presence of a
    thaumatin-like protein , a chitinase and a glucanase
    among the pathogensis-related proteins of potato (Solanum
    tuberosum). Physiol Mol Plant Path 36:325-338
    Pressey R (1997) Two isoforms of NP24: A thaumatin-like
    protein in tomato fruit. Phytochem 44: 1241-1245
    Racusen D (1979) Glycoprotein detection in polyacrylamide gel
    with thymol and sulfuric acid. Anal Biochem 99: 474-476
    Reimmann C, Dudler R (1993) cDNA cloning and sequence
    analysis of a pathogen-induced thaumatin-like protein
    from rice (Oryza sativa). Plant Physiol 101: 1113-1114
    Richardson M, Valdes-Rodriguez S, Blanco-Labra A (1987) A
    possible function for thaumatin and a TMV-induced protein
    suggested by homology to a maize inhibitor. Nature 327:
    432-434
    Roberts WK, Selitrennikoff CP (1990) Zeamatin, an antifungal
    protein from
    maize with membrane-permeabilizing activity. J Gen Microbiol 136:
    1771-1778
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt
    MD (1996) Systemic acquired resistance. Plant Cell 8: 1809-1819
    Ryals J, Uknes S, Ward E (1994) Systemic acquired resistance. Plant Physiol
    104: 1109-1112
    Salzman RA, Tikhonova l, Bordelon BP, Hasegawa PM, Bressan RA
    (1998) Coordinate accumulation of antifungal proteins and hexoses
    constitutes a developmentally controlled defense response during fruit
    ripening in grape. Plant Physiol 117: 465-472
    Sassa H, Hirano H (1998) Style-specific and developmentally regulated
    accumulation of a glycosylated thaumatin/PR5-like protein in Japanese
    pear (Pyrus serotina Rehd.). Planta 205: 514-521
    Schlumbaum A, Mauch F, Vogeli U, Boller T (1986) Plant chitinases are
    potent inhibitors of fungal growth. Nature 324: 365-367
    Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson
    MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of
    osmotin. Plant Physiol 85: 529-536
    Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA (1989)
    Molecular cloning of osmotin and regulation of its expression by ABA and
    adaptation to low water potential. Plant Physiol 90: 1096-1101
    Skadsen RW, Sathish P, Kaeppler HF (2000) Expression of thaumatin-like
    permatin PR-5 genes switches from the ovary wall to the aleurone in
    developing barley and oat seeds. Plant Sci 156: 11-22
    Slootstra JW, De Geus P, Haas H, Verrips CT, Meloen RH (1995) Possible
    active site of the sweet-tasting protein thaumatin. Chem Senses 20: 535-
    543
    Takeda S, Sato F, Ida K, Yamada Y (1990) Characterization of polypeptides
    that accumulate in cultured Nicotiana tabacum cells. Plant Cell Physiol
    31: 215-221
    Takeda S, Sato F, Ida K, Yamada Y (1991) Nucleotide sequence of a cDNA
    for osmotin-like protein from cultured tobacco cells. Plant Physiol 97:
    844-846
    Tattersall DB, Heeswijck R van, Hoj PB (1997) Identification and
    characterization of a fruit-specific thaumatin-like protein that
    accumulates at very high levels in conjunction with the onset of sugar
    accumulation and berry softening in grapes. Plant Physiol 114 : 759-769
    Trudel J, Grenier J, Potvin C, Asselin A (1998) Several thaumatin-like
    proteins bind to β-1,3-glucan. Plant Physiol 118: 1431-1438
    Van Der Wel H, Loeve K (1972) Isolation and characterization of thaumatin
    ⅠandⅡ, tha sweet-tasting proteins from Thaumatococcus daniellii Benth.
    Eur J Biochem 31: 221-225
    van Loon LC, Pierpoint WS, Boller T, Conejero V (1994)
    Recommendations for naming plant pathogenesis-related proteins. Plant
    Mol Biol Rep 12: 245-264
    van Loon LC, Van Kammen A (1970) Polyacrylamide disc electrophoresis of
    the soluble leaf proteins from Nicotiana tabacum var “Samsun” and
    “Samsun NN”.Ⅱ.Changes in protein constitution after infection with
    tobacco mosaic virus. Virology 40: 199-211
    Vigers AJ, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP,
    Fritig B (1992) Thaumatin-like pathogenesis-related proteins are
    antifungal. Plant Sci 83: 155-161
    Vogeli-Lange R, Frundt C, Hart CM, Nagy Y, Meins F (1994) Developmental,
    hormonal and pathogenesis-related regulation of the tobacco classⅠβ-1, 3-
    glucanase B promoter. Plant Mol Biol 25: 299-311
    Wang X, Zafian P, Choudhary M, Lawton M (1996) The PR5K receptor
    protein kinase from Arabidopsis thaliana is structurally related to a
    family of plant defense proteins. Proc Natl Acad Sci USA 93: 2598-2602
    Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL,
    Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate
    gene activity in response to agens that induce systemic acquired
    resistance. Plant Cell 3: 1085-1094
    Williams ME, Foster R, Chua N-H (1992) Sequences flanking the hexamer G-
    box core CACGTG affect the specificity of protein binding. Plant Cell 4:
    485-496
    Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJM,
    Cornelissen BJC (1991) Pathogen-induced proteins with inhibitory
    activity against phytophthora infestans. Plant Cell 3: 619-628
    Xu Y, Chang PF, Liu D, Narasimhan ML, Ragothama KG, Hasegawa
    PM, Bressan RA (1994) Plant defense genes are synergistically induced
    by ethylene and methyl jasmonate. Plant Cell 6: 1077-1085
    Ye XY, Wang HX, Ng TB (1999) First Chromatographic isolation of an
    antifungal thaumatin-like protein from French bean legumes and
    demonstration of its antifungal activity. Biochem Biophys Res Commun
    263: 130-134
    Yun DJ, Zhao Y, Pardo JM, Narasimhan MM, Damsz B, Lee H, Abad
    LR, D’Hurzo MP, Hasegawa PM, Bressan RA (1997) Stress proteins
    on the yeast cell surface determine resistance to osmotin, a plant
    antifungal protein. Proc Natl Acad Sci USA 94: 7082-7087
    Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced
    protection against fungal attack by constitutive co-expression of chitinase
    and glucanase genes in transgenic tobacco. Bio/Technology 12: 807-812

    QR CODE