簡易檢索 / 詳目顯示

研究生: 巫佩岑
Pei-Tsen Wu
論文名稱: 一、探討新穎Indolylquinoline衍生物誘導非小細胞肺癌細胞凋亡機制 二、鑑定具有清除肺癌幹細胞的藥物
一.A Novel Indolylquinoline Derivative Induced Apoptosis in Human Non-small Cell Lung Cancer Cells 二.
指導教授: 方剛
Fang, Kang
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: Indolylquinoline細胞凋亡p53非小細胞肺癌自我更新球狀細胞癌症類幹細胞teroxirone夏枯草苦參鴨膽子抗藥性
英文關鍵詞: Indolylquinoline, apoptosis, p53, non-small cell lung cancer, self-renewal, sphere, cancer stem-like cells, teroxirone, Prunella vulgaris, Sophora flavescens, Brucea javanica, drug resistence
論文種類: 學術論文
相關次數: 點閱:263下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一.過去研究利用MTT assay以非小細胞肺癌細胞 (non-small cell lung cancer, NSCLC) 為平台篩選了逾五百種小分子化合物,發現含有indole 及quinoline這兩種官能基的小分子化合物compound A,於低劑量下,會抑制A549及H460這兩株NSCLC細胞生長速率及抑制A549腫瘤生長,但對抑癌基因p53缺失的H1299細胞株則無影響,接著使用western blot, MTT及flow cytometry,證實此藥物會誘導表現野生型p53的細胞產生凋亡,但是p53缺失的H1299細胞對此藥物的敏感度較低,而且不會出現凋亡。本論文內容是繼續探討此藥物對NSCLC細胞的調控生長機制與p53基因型的相關性。實驗主要是將p53缺失的H1299,分別轉殖入p53 DNA-binding domain 位點突變的p53R267P以及野生型p53的細胞株,其次再使用MTT 實驗,發現以此藥物10 µM處理H1299轉殖野生型p53細胞48小時後的生長速率較轉殖p53R267P敏感度高35%,繼續使用propidium iodide及Annexin V進行實驗,證實轉殖野生型p53細胞生長率的降低,是細胞凋亡造成,但以此藥物10 µM處理H1299/p53R267P細胞48小時後,細胞凋亡數目比例較H1299/p53細胞降低39.2%,最後由western blot確認細胞凋亡與p53及其下游poly (ADP-ribose) polymerase (PARP) 裂解及caspase-3活化的蛋白質相關。這些實驗結果證明此藥物對表現野生型p53的H1299/p53細胞有最佳的治療效果,且野生型p53功能在此藥物誘導的凋亡機制中扮演了重要角色。未來實驗中將持續探討compound A如何降低腫瘤細胞生長,實驗會以癌症類幹細胞為模式,持續研究抑制腫瘤生長及轉移的機制。

    二.中草藥療法在近幾年被重視,因為以中草藥搭配放射療法能減低癌症病患副作用,提升體質。本實驗以可能具有較高轉移能力及抗藥性的肺癌類幹細胞為模式,研究中藥苦參 (Sophora flavescens) 、鴨膽子 (Brucea javanica)、夏枯草 (Prunella vulgaris) 及西藥teroxirone 如何抑制肺癌類幹細胞生長。本實驗觀察幹細胞表面標誌Nanog,確認肺癌類幹細胞平臺的建立,接續使用螢光顯微鏡觀察幹細胞在這些藥物處理下,H460, H1299/p53及A549肺癌類幹細胞會隨藥物濃度及時間增加,其數目及形狀明顯的變少及變小,表示具有抑制肺癌類幹細胞生長的潛力,最後再以western blot實驗確認teroxirone會誘導H460肺癌類幹細胞走向p53依賴的細胞凋亡路徑。於先前研究中已知夏枯草可降低肝癌細胞的轉移力,苦參及鴨膽子可抑制A549腫瘤生長,此外,低劑量的teroxirone可抑制肺癌細胞生長及誘導細胞凋亡,所以日後將持續以此類模式探討這些藥物是否能抑制肺癌類幹細胞生長以及降低轉移能力。

    一.Previously, we have screened more than five hundred compounds with small molecular weight through MTT assay. The findings have identified that lower concentrations of a small molecular compound A containing functional groups indole and quinoline was effective to inhibit the growth rate of wild-type p53 NSCLC cells and suppress tumor growth, but the drug is less sensitive to p53-null H1299 cells. All western blot, MTT, and flow cytometry experiments showed that the induced apoptosis in NSCLC cells involved wild-type tumor suppressor genes p53. The cells without p53 were less sensitive to compound A.The experiments keep on exploring the mechanism on how compound A regulates the growth and association with p53 status in cells. We have further tested the effect of the compound in p53-null H1299 cells with stable expression of mutated (H1299/p53R267P) and wild-type p53 (H1299/p53), respectively. Through MTT assay, after treated 10 µM compound A 48 hours, the data was shown more drug effective in H1299/p53 cells than H1299/p53R267P cells. The results proved that the efficacy is related to p53 genotype. Using flow cytometry and western blot experiments, we found that compound A can reduce proliferation rate through apoptotic cell death in the H1299/p53 cells, and the apoptosis percent of H1299/p53 cells is 39.2% higher than H1299/p53R267P cells. We have also shown that the p53-dependent apoptotic cell death pathway began with activating p53, attenuating Bcl-2, activating caspase family proteins, and finally cleaving poly (ADP-ribose) polymerase. These results demonstrate that the cells with wild-type p53 were more sensitive to compound A. In the future, we will continue to explore the mechanisms on how compound A inhibits the growth and metastasis in lung cancer stem-like models.

    二.In recent years, the Chinese herb medicine therapy is taken seriously because this therapy combine with Radiotherapy can reduce side effect and improve constitution in cancer patients. The experiment based on the lung cancer stem-like cells model, which may be higher metastasis and resistance. To evaluate Chinese herb medicine Sophora flavescens , Brucea javanica , Prunella vulgaris and triep teroxirone can potentially eradicate lung cancer stem-like cells, we used human lung cancer stem-like cells as established from the parental cells. First, we used fluorescence microscopy to confirm that H460, A549 and H12PP/p53 stem-like cells changed in size and in numbers after the drugs treated. Finally, we used western blot experiment to confirm that teroxirone reduced the H460 stem-like cells numbers resulted from apoptotic cell death, and the apoptosis pathway is associated with p53and apoptosis proteins. Previously, we showed that the Chinese herb medicine Prunella vulgaris inhibited the metastasis capacity in liver cancer cells. Besides, Sophora flavescens and Brucea javanica inhibited A549 tumors growth.We also showed that teroxirone inhibited NSCLC cell growth that was caused by apoptotic cell death. In this work, we continued to use stem-like models to evaluate whether these drugs inhibit cells growth and metastatic property of the stem-like cells.

    第一部分 壹、 中文摘要………………………………….............4 貳、 英文摘要..…….…………………………………........6 參、 文獻回顧….........…………………………………..…8 肆、 研究目標………………………………….............12 伍、 材料與方法…………………......……………….....13 陸、 結果........…………………….…..……………....20 柒、 討論……………………………………….……..........…23 捌、 參考文獻….……………………………......………....26 玖、 圖…………………………………........………………...32 第二部分 壹、 中文摘要………………………………….............43 貳、 英文摘要..…….......…………………………………..44 參、 文獻回顧…...…………………......………………..…45 肆、 研究目標…………………………………............ 51 伍、 材料與方法……………………………………..........51 陸、 結果........……………………..……………….…...54 柒、 討論………………………………..........……….………56 捌、 參考文獻….…………………......…………………....60 玖、 表…………………………………...........……………….69 壹拾、 圖.…………………………………..........…………….….70

    第一部份

    [1] W.A. Cooper, D.C. Lam, S.A. O'Toole, J.D. Minna, Molecular biology of lung cancer. Journal of Thoracic Disease 5 (2013) S479-S490.

    [2] C. Tan, H.Y. Xu, C.Y. Zhang, H. Zhang, C.M. Chen, W.M. Zhang, X.Y. Sun, Y.T. Jin, Effect of CYP1A1 MSPI polymorphism on the relationship between TP53 mutation and CDKN2A hypermethylation in non-small cell lung cancer. Archives of Medical Research 42 (2011) 669-676.

    [3] P. Hainaut, M. Hollstein, p53 and human cancer: the first ten thousand mutations. Advances in Cancer Research 77 (2000) 81-137.

    [4] A. Baldi, A. De Luca, V. Esposito, M. Campioni, E.P. Spugnini, G. Citro, Tumor suppressors and cell-cycle proteins in lung cancer. Pathology Research International 2011 (2011) 605042.

    [5] H.Y. Chen, H.F. Chen, C.L. Kao, P.Y. Yang, S.C. Hsu, Interaction of electrons with cisplatin and the subsequent effect on DNA damage: a density functional theory study. Physical Chemistry Chemical Physics (2014).

    [6] S. Igawa, M. Kasajima, M. Ishihara, M. Kimura, Y. Hiyoshi, M. Asakuma, S. Otani, K. Katono, J. Sasaki, N. Masuda, Comparison of the efficacy of gefitinib in patients with non-small cell lung cancer according to the type of epidermal growth factor receptor mutation. Oncology 87 (2014) 215-223.

    [7] N. Ochi, N. Takigawa, D. Harada, M. Yasugi, E. Ichihara, K. Hotta, M. Tabata, M. Tanimoto, K. Kiura, Src mediates ERK reactivation in gefitinib resistance in non-small cell lung cancer. Experimental Cell Research (2014).

    [8] K. Kubota, Y. Ichinose, G. Scagliotti, D. Spigel, J.H. Kim, T. Shinkai, K. Takeda, S.W. Kim, T.C. Hsia, R.K. Li, B.J. Tiangco, S. Yau, W.T. Lim, B. Yao, Y.J. Hei, K. Park, Phase III study (MONET1) of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous nonsmall-cell lung cancer (NSCLC): Asian subgroup analysis. Annals of Oncology (2014).

    [9] K. Buser, F. Joncourt, H.J. Altermatt, M. Bacchi, A. Oberli, T. Cerny, Breast cancer: pretreatment drug resistance parameters (GSH-system, ATase, P-glycoprotein) in tumor tissue and their correlation with clinical and prognostic characteristics. Annals of oncology : Official Journal of the European Society for Medical Oncology / ESMO 8 (1997) 335-341.

    [10] M. Lacroix, L.K. Linares, L. Le Cam, Role of the p53 tumor suppressor in metabolism. Medecine Sciences 29 (2013) 1125-1130.

    [11] Y. Cho, S. Gorina, P.D. Jeffrey, N.P. Pavletich, Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265 (1994) 346-355.

    [12] S.P. Hussain, L.J. Hofseth, C.C. Harris, Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung Cancer 34 Suppl 2 (2001) 7-15.

    [13] P.A. Muller, K.H. Vousden, p53 mutations in cancer. Nature Cell Biology 15 (2013) 2-8.

    [14] J.V. Thottassery, G.P. Zambetti, K. Arimori, E.G. Schuetz, J.D. Schuetz, p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proceedings of the National Academy of Sciences of the United States of America 94 (1997) 11037-11042.

    [15] W.D. Wang, R. Li, Z.T. Chen, D.Z. Li, Y.Z. Duan, Z.H. Cao, Cisplatin-controlled p53 gene therapy for human non-small cell lung cancer xenografts in athymic nude mice via the CArG elements. Cancer Science 96 (2005) 706-712

    [16] D.B. Zamble, T. Jacks, S.J. Lippard, p53-Dependent and -independent responses to cisplatin in mouse testicular teratocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America 95 (1998) 6163-6168.

    [17] B. Hong, A.P. van den Heuvel, V.V. Prabhu, S. Zhang, W.S. El-Deiry, Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Current Drug Targets 15 (2014) 80-89.

    [18] Y.H. Ou, P.H. Chung, T.P. Sun, S.Y. Shieh, p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Molecular Biology of the Cell 16 (2005) 1684-1695.

    [19] J.W. Harper, S.J. Elledge, The DNA damage response: ten years after. Molecular Cell 28 (2007) 739-745.

    [20] A. Lawen, Apoptosis-an introduction. BioEssays 25 (2003) 888-896.

    [21] S. Zou, J. Chang, L. LaFever, W. Tang, E.L. Johnson, J. Hu, R. Wilk, H.M. Krause, D. Drummond-Barbosa, P.M. Irusta, Identification of Aven, a Drosophila melanogaster ortholog of the cell cycle regulator Aven. Cell Cycle 10 (2011) 989-998.

    [22] J.D. Amaral, J.M. Xavier, C.J. Steer, C.M. Rodrigues, The role of p53 in apoptosis. Discovery Medicine 9 (2010) 145-152.

    [23] W.R. Taylor, G.R. Stark, Regulation of the G2/M transition by p53. Oncogene 20 (2001) 1803-1815.

    [24] A.I. Nieminen, V.M. Eskelinen, H.M. Haikala, T.A. Tervonen, Y. Yan, J.I. Partanen, J. Klefstrom, Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proceedings of the National Academy of Sciences of the United States of America 110 (2013) E1839-1848.

    [25] N. Haga, N. Fujita, T. Tsuruo, Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene 22 (2003) 5579-5585.

    [26] M.E. Delgado, M. Olsson, F.A. Lincoln, B. Zhivotovsky, M. Rehm, Determining the contributions of caspase-2, caspase-8 and effector caspases to intracellular VDVADase activities during apoptosis initiation and execution. Biochimica et Biophysica Acta 1833 (2013) 2279-2292.

    [27] A. Ashkenazi, V.M. Dixit, Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 11 (1999) 255-260.

    [28] P.A. Muller, K.H. Vousden, Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25 (2014) 304-317.

    [29] E.P. Moiseeva, L.H. Fox, L.M. Howells, L.A. Temple, M.M. Manson, Indole-3-carbinol-induced death in cancer cells involves EGFR downregulation and is exacerbated in a 3D environment. Apoptosis : an International Journal on Programmed Cell Death 11 (2006) 799-812.

    [30] O. Afzal, S. Kumar, M.R. Haider, M.R. Ali, R. Kumar, M. Jaggi, S. Bawa, A review on anticancer potential of bioactive heterocycle quinoline. European journal of medicinal chemistry (2014).

    [31] V.R. Solomon, H. Lee, Quinoline as a privileged scaffold in cancer drug discovery. Current medicinal chemistry 18 (2011) 1488-1508.

    [32] C. Pal, M. Raha, A. Basu, K.C. Roy, A. Gupta, M. Ghosh, N.P. Sahu, S. Banerjee, N.B. Mandal, S. Bandyopadhyay, Combination therapy with indolylquinoline derivative and sodium antimony gluconate cures established visceral leishmaniasis in hamsters. Antimicrobial Agents and Chemotherapy 46 (2002) 259-261.

    [33] Y. Zhou, W.S. Ho, Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncology Reports 31 (2014) 298-304.

    [34] T. Maeda, A.N. Hanna, A.B. Sim, P.P. Chua, M.T. Chong, V.A. Tron, GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. The Journal of Investigative Dermatology 119 (2002) 22-26.

    [35] H. Niu, Y. Zhang, B. Wu, H. Jiang, P. He, Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway. Oncology Reports (2014)

    [36] Chia-Wei Lin, Ming-Yi Lin, Chung-Hsin Wu, Hwei-tein Huang, Kang Fang, VP-16-mediated Akt-Ser473 dephosphorylation induces apoptosis in human non-small cell Lung cancer cells with mutated p53 BioFormosa (2008) 43(1): 17-24

    第二部份

    [1] A.M. Crous, H. Abrahamse, Lung cancer stem cells and low-intensity laser irradiation: a potential future therapy? Stem Cell Research & Therapy 4 (2013) 129.

    [2] E. Passegue, S. Rafii, M. Herlyn, Cancer stem cells are everywhere. Nature Medicine 15 (2009) 23.

    [3] R. Pardal, M.F. Clarke, S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nature Reviews. Cancer 3 (2003) 895-902.

    [4] S. He, D. Nakada, S.J. Morrison, Mechanisms of stem cell self-renewal. Annual Review of Cell and Developmental Biology 25 (2009) 377-406.

    [5] K.A. Hassan, L. Wang, H. Korkaya, G. Chen, I. Maillard, D.G. Beer, G.P. Kalemkerian, M.S. Wicha, Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clinical Cancer Research 19 (2013) 1972-1980.

    [6] Y. Xi, Y. Chen, Wnt signaling pathway: Implications for therapy in lung cancer and bone metastasis. Cancer Letters (2014).

    [7] M.J. Jung, J.K. Rho, Y.M. Kim, J.E. Jung, Y.B. Jin, Y.G. Ko, J.S. Lee, S.J. Lee, J.C. Lee, M.J. Park, Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 32 (2013) 209-221.

    [8] R. Gomez-Casal, C. Bhattacharya, N. Ganesh, L. Bailey, P. Basse, M. Gibson, M. Epperly, V. Levina, Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Molecular Cancer 12 (2013) 94.

    [9] Taiwan Breast Cancer Foundation
    http://www.breastcf.org.tw/index.php/knowledge-base/health-care-information/578-2012-08-01-09-28-11

    [10] M.E. Zoghbi, G.A. Altenberg, ATP binding to two sites is necessary for dimerization of nucleotide-binding domains of ABC proteins. Biochemical And Biophysical Research Communications 443 (2014) 97-102.

    [11] X.W. Ding, J.H. Wu, C.P. Jiang, ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sciences 86 (2010) 631-637.

    [12] Y.P. Hu, L.Y. Tao, F. Wang, J.Y. Zhang, Y.J. Liang, L.W. Fu, Secalonic acid D reduced the percentage of side populations by down-regulating the expression of ABCG2. Biochemical Pharmacology 85 (2013) 1619-1625.

    [13] H.R. Mott, D. Owen, Structure and function of RLIP76 (RalBP1): an intersection point between Ras and Rho signalling. Biochemical Society Transactions 42 (2014) 52-58.

    [14] F. Raspagliesi, F. Zanaboni, F. Martinelli, S. Scasso, J. Laufer, A. Ditto, Role of paclitaxel and cisplatin as the neoadjuvant treatment for locally advanced squamous cell carcinoma of the vulva. Journal of Gynecologic Oncology 25 (2014) 22-29.

    [15] G. Ciarimboli, Membrane transporters as mediators of cisplatin side-effects. Anticancer Research 34 (2014) 547-550.

    [16] M.A. Goodell, K. Brose, G. Paradis, A.S. Conner, R.C. Mulligan, Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine 183 (1996) 1797-1806.

    [17] B.R. Kim, K. Yoon, H.J. Byun, S.H. Seo, S.H. Lee, S.B. Rho, The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1alpha and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways. Oncotarget (2014).

    [18] K.Y. Tai, Y.S. Shieh, C.S. Lee, S.G. Shiah, C.W. Wu, Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene 27 (2008) 4044-4055.

    [19] H. Long, R. Xie, T. Xiang, Z. Zhao, S. Lin, Z. Liang, Z. Chen, B. Zhu, Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation. Stem Cells 30 (2012) 2309-2319.

    [20] L. Yang, Y. Ren, X. Yu, F. Qian, B.S. Bian, H.L. Xiao, W.G. Wang, S.L. Xu, J. Yang, W. Cui, Q. Liu, Z. Wang, W. Guo, G. Xiong, K. Yang, C. Qian, X. Zhang, P. Zhang, Y.H. Cui, X.W. Bian, ALDH1a1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Modern Pathology (2013).

    [21] I.G. Kim, S.Y. Kim, S.I. Choi, J.H. Lee, K.C. Kim, E.W. Cho, Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+ lung cancer stem cells through IGF1R signaling. Oncogene (2013).

    [22] C.P. Huang, M.F. Tsai, T.H. Chang, W.C. Tang, S.Y. Chen, H.H. Lai, T.Y. Lin, J.C. Yang, P.C. Yang, J.Y. Shih, S.B. Lin, ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Letters 328 (2013) 144-151.

    [23] H. Qu, R. Li, Z. Liu, J. Zhang, R. Luo, Prognostic value of cancer stem cell marker CD133 expression in non-small cell lung cancer: a systematic review. International Journal of Clinical And Experimental Pathology 6 (2013) 2644-2650.

    [24] K. Mitsui, Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, S. Yamanaka, The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113 (2003) 631-642.

    [25] M.L. Wang, S.H. Chiou, C.W. Wu, Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets And Therapy 6 (2013) 1207-1220.

    [26] G. Atassi, F. Spreafico, P. Dumont, P. Nayer, J. Klastersky, Antitumoral effect in mice of a new triepoxyde derivative: 1, 3, 5-triglycidyl-s-triazinetrione (NSC 296934). European Journal of Cancer 16 (1980) 1561-1567.

    [27] M. Piccart, M. Rozencweig, P. Dodion, E. Cumps, N. Crespeigne, O. Makaroff, G. Atassi, D. Kisner, Y. Kenis, Phase I clinical trial with alpha 1,3,5- triglycidyl-s-triazinetrione (NSC-296934). European Journal of Cancer & Clinical Oncology 17 (1981) 1263-1266.

    [28] F. Spreafico, G. Atassi, S. Filippeschi, C. Malfiore, S. Noseda, D. Boschetti, A characterization of the activity of alpha-1,3,5-triglycidyl-s-triazinetrione, a novel antineoplastic compound. Cancer Chemotherapy And Pharmacology 5 (1980) 103-108.

    [29] F.Y. Wu, J.B. Le Pecq, Mechanistic studies of a novel antitumor drug, alpha-1,3,5-triglycidyl-s-triazinetrione. Antitumor and cytotoxic effects. Molecular Pharmacology 23 (1983) 182-189.

    [30] J. Rubin, J.S. Kovach, M.M. Ames, C.G. Moertel, E.T. Creagan, M.J. O'Connell, Phase I study of two schedules of teroxirone. Cancer Treatment Reports 71 (1987) 489-492.

    [31] C. Nicaise, M. Rozencweig, N. Crespeigne, P. Dodion, B. Gerard, M. Lambert, G. Decoster, Y. Kenis, Phase I study of triglycidylurazol given on a 5-day i.v. schedule. Cancer Treatment Reports 70 (1986) 599-603.

    [32] J.A. Neidhart, D. Derocher, M.R. Grever, E.H. Kraut, L. Malspeis, Phase I trial of teroxirone. Cancer Treatment Reports 68 (1984) 1115-1119.

    [33] M.M. Ames, J.S. Kovach, J. Rubin, Pharmacological characterization of teroxirone, a triepoxide antitumor agent, in rats, rabbits, and humans. Cancer Research 44 (1984) 4151-4156.

    [34] J.P. Wang, K.H. Lin, C.Y. Liu, Y.C. Yu, P.T. Wu, C.C. Chiu, C.L. Su, K.M. Chen, K. Fang, Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53. Toxicology And Applied Pharmacology 273 (2013) 110-120.

    [35] F. Liu, X. Cao, Z. Liu, H. Guo, K. Ren, M. Quan, Y. Zhou, H. Xiang, J. Cao, Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochimica et Biophysica Sinica 46 (2014) 15-21.

    [36] R. Huang, M. Zhao, X. Yang, J. Huang, Y. Yang, B. Chen, J. Tan, Z. Li, Y. Lv, G. Ji, Effects of Prunella vulgaris on the mice immune function. PloS One 8 (2013) e77355.

    [37] L. Feng, W. Au-Yeung, Y.H. Xu, S.S. Wang, Q. Zhu, P. Xiang, Oleanolic acid from Prunella vulgaris induces SPC-A-1 cell line apoptosis via regulation of Bax, Bad and Bcl-2 expression. Asian Pacific Journal of Cancer Prevention 12 (2011) 403-408.

    [38] S.H. Kim, C.Y. Huang, C.Y. Tsai, S.Y. Lu, C.C. Chiu, K. Fang, The aqueous extract of Prunella vulgaris suppresses cell invasion and migration in human liver cancer cells by attenuating matrix metalloproteinases. The American Journal of Chinese Medicine 40 (2012) 643-656.

    [39] C.J. Yao, C.T. Yeh, L.M. Lee, S.E. Chuang, C.F. Yeh, W.J. Chao, T.Y. Lai, G.M. Lai, Elimination of cancer stem-like "side population" cells in hepatoma cell lines by chinese herbal mixture "tien-hsien liquid". Evidence-based Complementary And Alternative Medicine 2012 (2012) 617085.

    [40] Y. Zhou, Y. Wu, L. Deng, L. Chen, D. Zhao, L. Lv, X. Chen, J. Man, Y. Wang, H. Shan, Y. Lu, The alkaloid matrine of the root of Sophora flavescens prevents arrhythmogenic effect of ouabain. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 21 (2014) 931-935.

    [41] H. Niu, Y. Zhang, B. Wu, H. Jiang, P. He, Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway. Oncology Reports (2014)

    [42] C. Tan, X. Qian, R. Jia, M. Wu, Z. Liang, Matrine induction of reactive oxygen species activates p38 leading to caspase-dependent cell apoptosis in non-small cell lung cancer cells. Oncology Reports 30 (2013) 2529-2535.

    [44] H. Zhou, M. Xu, Y. Gao, Z. Deng, H. Cao, W. Zhang, Q. Wang, B. Zhang, G. Song, Y. Zhan, T. Hu, Matrine induces caspase-independent program cell death in hepatocellular carcinoma through bid-mediated nuclear translocation of apoptosis inducing factor. Molecular Cancer 13 (2014) 59.

    [43] H.J. Smyly, A note on the treatment of amebic infection with Brucea javanica seeds. Chinese Medical Journal 66 (1948) 363-365.

    [45] Q. Wang, M. Wang, X. He, T. Gao, H. Cao, W. Dou, J. Tian, Meta-analysis on treatment of non-small cell lung cancer with brucea javanica oil emulsion in combination with platinum-contained first-line chemotherapy. China Journal of Chinese Materia Medica 37 (2012) 2022-2029.

    [46] Z. Xiao, S. Ching Chow, C. Han Li, S. Chun Tang, S.K. Tsui, Z. Lin, Y. Chen, Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma. European Journal of Pharmacology 728 (2014) 141-150.

    [47] X. Kong, M.Z. Ma, Y. Zhang, M.Z. Weng, W. Gong, L.Q. Guo, J.X. Zhang, G.D. Wang, Q. Su, Z.W. Quan, J.R. Yang, Differentiation therapy: sesamin as an effective agent in targeting cancer stem-like side population cells of human gallbladder carcinoma. BMC Complementary and Alternative Medicine 14 (2014) 254.

    [48] International Institute of Holistic Medicine
    http://www.tcmoncology.com/index.php?categoryid=20&m2107_sectionid=3&m2107_imageid=29

    [49] 沈連生, 《本草綱目 精編圖文本》, 華夏出版社, 2007.7,第85頁

    下載圖示
    QR CODE