簡易檢索 / 詳目顯示

研究生: 許銓喆
Hsu, Chuan-Che
論文名稱: 二硫化鉬相關異質結構分析
Heterostructures of two-dimensional material MoS2
指導教授: 林文欽
Lin, Wen-Chin
口試委員: 洪振湧 郭建成 駱芳鈺 莊子弘 林文欽
口試日期: 2021/06/22
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 89
中文關鍵詞: 二硫化鉬異質結構二硫化鉬磁性有機材料
英文關鍵詞: MoS2, heterostructure/MoS2, magnetic, organic material
研究方法: 實驗設計法調查研究
DOI URL: http://doi.org/10.6345/NTNU202100574
論文種類: 學術論文
相關次數: 點閱:160下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們分析二硫化鉬異質結構的物理特性,我們將鐵磁性材料(鐵、鈷鈀合金)和功能性材料(金、C60)鍍在二硫化鉬的薄片上。所有實驗中的二硫化鉬都使用化學氣相沉積(CVD)來製備於二氧化矽/矽(1 0 0)上。在鍍上異質結構之前,我們都會利用原子力顯微鏡(AFM)、光致發光光譜(PL)和拉曼光譜(Raman)來檢查二硫化鉬的基本性質。形貌上,發現一些有趣的現象:高溫下(約500 k)在二硫化鉬上鈷鈀合金的實驗中觀察到有奈米顆粒會聚集在單層二硫化鉬的邊緣,然而在多層二硫化鉬中這些奈米顆粒則在每層邊緣平行排列,且我們也觀察到光致發光的quenched (淬滅)現象,這證明高溫下鈷鈀合金也有覆蓋在二硫化鉬的平台表面上且非常的平坦,粗糙度約小於±0.5 nm,相較之下,常溫下成長在二硫化鉬的鈷鈀合金薄膜卻很粗糙(粗糙度~±2 nm)。再來是關於二硫化鉬上金(2~8 nm),我們觀察到高度反轉的現象。鍍金前,二硫化鉬到基板二氧化矽的台階高度為 +0.66 nm,這大約是正常的二硫化鉬的單層厚度。鍍金後,二硫化鉬到基板之間的高度反轉成(約-1.0至-3.5 nm)。此高度反轉現象的原因是金在二硫化鉬和基板上的不同生長模式,且這機制會取決於金的鍍膜時的溫度和金的厚度。

    關於磁性方面,令人驚訝的是我們觀察到鐵磁性材料(鐵、鈷鈀合金)/二硫化鉬與旁邊的基板二氧化矽之間有magnetic decoupling(磁去耦合)的現象。儘管二硫化鉬厚度(~0.66 nm)比鐵或鈷鈀合金的厚度更薄,關於3.6 nm的鐵在二硫化鉬上的矯頑場 (Hc) 為 28 ±5 Oe,然旁邊區域基板二氧化矽上的3.6 nm Fe的Hc約為 58 ±5 Oe,可看出矯頑場有明顯的差異(約30 Oe),之所以會有magnetic decoupling是由於鐵在不同基材上具有明顯的界面的磁各異向性。且也觀察到鈷鈀合金在二硫化鉬上也有類似的現象,在二硫化鉬上的鈷鈀合金(8 nm)的Hc為 52 ±3 Oe,旁邊的基板二氧化矽上的鈷鈀合金Hc 為 64 ±3 Oe,可得知鈷鈀合金上也會觀察到magnetic decoupling的現象。

    最後,關於有機材料在二硫化鉬上的研究,隨著C60覆蓋度的增加,PL峰值從原本是二硫化鉬主導的1.83 eV變為C60主導的1.69 eV,此外在 C60/二硫化鉬這異質結構上證明了連續雷射會導致C60脫附。大約10 mW/µm2 的雷射功率就足以讓二硫化鉬薄片中的 20 nm C60脫附,所以可用這方法設計約為 500 nm微觀圖案。除了形態結構之外,還通過連續雷射誘導C60脫附的方法,來觀察在C60/二硫化鉬上微觀圖形的PL,關於上述在二維材料二硫化鉬基本研究(形貌,磁性,有機材料雕製微觀圖形),相信這對未來的二維材料的二硫化鉬自旋電子應用
    或元件設非常有幫助。

    In these theses, we deposited the FM materials (Fe, CoPd) and functional materials (Au, C60) on the molybdenum disulfide (MoS2) flakes and studied heterostructure influence with MoS2 flakes. Before deposition, we check the quality of MoS2 flakes by atomic force microscope (AFM), photoluminescence (PL), and Raman spectrum. The MoS2 flakes were produced on SiO2/Si(1 0 0) using chemical vapor deposition. In morphological, the CoPd nanoparticles congregate at the edge of MoS2 flake in HT (approximately ~500 k) growth, and the nanoparticles arranged parallel chain at the edge of each layer in multilayer MoS2. Moreover, we also observed the quenched phenomenon in PL spectra. These results indicated the flat HT-CoPd coverage (roughness ≤ ±0.5 nm) on a MoS2 plane. In contrast, at room temperature CoPd film grown on MoS2 is very rough (roughness ~±2 nm). About gold (2~8 nm) on the MoS2, we observed the height reversal phenomenon. Before the deposition, the height of the step from MoS2 flake to SiO2 is +0.66nm. After the Au deposition, the height reversal difference (about –1.0 to –3.5 nm) between the MoS2 flake and the SiO2 depends on the growth temperature and Au thickness. The reason for the height reversal phenomenon is the different growth modes of Au on the
    MoS2 and SiO2 surfaces.

    In magnetic property, the MoS2 Step (~0.66 nm) was thinner than the thickness of Fe or CoPd. Surprisingly, we observed the magnetic decoupling between FM materials (Fe, CoPd)/MoS2 and FM materials (Fe, CoPd)/SiO2. The magnetic coercivity (Hc) was 28 ±5 Oe on 3.6 nm Fe/MoS2. On the other hand, the Hc of 3.6 nm Fe/SiO2 was around 58 ±5 Oe. Because of the distinct interface magnetic anisotropy of Fe on different substrates. For the 8 nm CoPd/MoS2, the CoPd nanoparticles at MoS2/SiO2 step edge played a crucial role in magnetic domain pinning. Therefore, the Hc of CoPd/MoS2 is 52 ±3 Oe. On the contrary, the Hc of 8 nm CoPd/SiO2 was 64 ±3 Oe. Similarly, the Hc of the CoPd/MoS2 was smaller than that of CoPd/SiO2. Besides, we observed the hydrogenation effect of RT CoPd (8 nm)/MoS2 and CoPd (8 nm)/SiO2 in
    reversible Hc enhancement.

    Finally, we discussed the organic materials on MoS2. With the increase of C60 coverage on the MoS2, the PL peak changes from MoS2 dominated 1.83 eV to C60 dominated 1.69 eV. Furthermore, CW laser-induced local desorption was demonstrated on the C60/MoS2 heterostructure. The laser power of around 10 mW/µm2 is enough for the desorption of 20 nm C60 from a MoS2 flake and can be used to create designed patterns with a resolution around 500 nm. Besides the morphological structure, the patterned PL is also achieved on
    C60/MoS2 through CW laser-induced desorption of C60. In the above observation (such as morphology, magnetism, and patterning of organic materials), these results will provide valuable information for future applications
    of MoS2.

    中文摘要 I Abstract II 致謝 IV 1. Introduction 1 1-1 Magnetic decoupling of Fe/MoS2/SiO2 1 1-2 Morphology and magnetism of CoPd/MoS2/SiO2 2 1-3 Height reversal in Au/MoS2/SiO2 3 1-4 Laser-induced desorption C60/MoS2 4 2. Background 6 2-1 Magnetic Anisotropy Energy 6 2-2 Magnetic hysteresis loop 9 2-3 Functional materials 11 2-4 Two-dimensional (2D) materials 14 2.5 Growth of thin film and islands 18 3. Instruments 19 3-1 Vacuum and Physical Vapor Deposition 19 3-2 Atomic Force Microscopy (AFM) 21 3-3 Raman scattering 23 3-4 Photoluminescence Spectroscopy 25 3-5 X-ray Photoelectron Spectroscopy 25 3-6 Magnetic-Optical Kerr Effect 26 3-7 Chemical Vapor Deposition 29 4. Magnetic decoupling of Fe/MoS2/SiO2 32 4-1 Characterization of MoS2 32 4-2 Fe/MoS2 Magnetic behavior 33 4-3 Discussion of Fe/MoS2 36 5.Morphology and magnetism of CoPd/MoS2/SiO2 42 5-1 Morphology of HT-grown CoPd/MoS2 42 5-2 PL and Raman spectroscopy of high temperature growth CoPd/MoS2 45 5-3 Morphology of RT-grown CoPd/MoS2 46 5-4 Step-induced domain pinning of RT-grown Pd/Co/MoS2 48 5-5 Hydrogenation effect on the magnetism of RT-grown CoPd/MoS2 51 5-6 Discussion 53 6. Height reversal in Au/MoS2/SiO2 55 6-1 Morphology of Au/MoS2 55 6-2 PL, RAMAN, SEM and TEM of Au/MoS2 56 6-3 Discussion Au/MoS2 61 7. Laser-induced desorption C60/MoS2 63 7-1 C60/MoS2 heterostructure 63 7-2 Laser-induced desorption of C60 65 7-3 Patterned C60/MoS2 70 8. Conclusions 75 9. Bibliography 78 10. Curriculum Vitae 86

    [2-1] X. Lin, and J. Ni, Journal of Applied Physics.116, 044311 (2014).

    [2-2] W. Wang, A. Narayan, L. Tang, K. Dolui, Y. Liu, X. Yuan, Y. Jin, Y. Wu, I. Rungger, S. Sanvito, and Faxian Xiu, Nano Lett. 15, 5261−5267 (2015).

    [2-3] Q, Shao, G, Yu, Y.-W. Lan, Y. Shi, M.-Y. Li, C. Zheng, X. Zhu, L.-J. Li, P.K. Amiri, and K.L. Wang, Nano Lett. 16, 7514−7520 (2016).

    [2-4] H.-C. Hsu, C.-B. Wu, K.-L. Hsu, P.-C. Chang, T.-Y. Fu, V.R. Mudinepalli, W.-C. Lin, Applied Surface Science. 357 551–557 (2015).

    [2-5] C. Gong, C. Huang, J.Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim,
    R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu, and Y. J. Chabal, ACS Nano. 7, 12, 11350–11357 (2013).

    [2-6] C.-H.-T.Chang, H.-H. Chang, P.-C. Jiang, and W.-B. Su, Japanese Journal of Applied Physics. 57, 08NB10 (2018).

    [2-7] T. D. Durbin, J. R. Lince, S. V. Didziulis, D. K. Shuh, J. A. Yarmoff, Surface Science. 302, 314-328 (1994).

    [2-8] R. Mantovan, Y. Matveyev, G. Vinai, C. Martella, P. Torelli,
    A. Molle, S. Zarubin, Y. Lebedinskii, and A. Zenkevich, Phys. Status Solidi A. 215, 1800015 (2018).

    [2-9] J. Bulicz, L. Morales de la Garza, and S. Fuentes, Surface Science. 365 411-421 (1996).

    [2-10] C.-C. Hsu, Z.-Y. Lin, P.-C. Chang, H.-C. Chiu, H.-W. Chen, H.-L. Liu, F.- Bisio and W.-C. Lin, J. Phys. D: Appl. Phys. 50, 415001 (2017).

    [2-11] W.-C. Lin, C.-J. Tsai, H.-Y. Huang, B.-Y. Wang, V. R. Mudinepalli, and H.-C.- Chiu, Appl. Phys. Lett. 106, 012404 (2015).

    [2-12] P.-C. Chang, Y.-C. Chen, C.-C. Hsu, V. R. Mudinepalli, H.-C. Chiu, W.-C. Lin, Journal of Alloys and Compounds. 710, 37-46 (2017).

    [2-13] V. R. Mudinepalli, Y.-C. Chen, P.-C. Chang, C.-C. Hsu, C.-Y. Tsai, H.-C. Chiu, C.-T. Wu, H.-W. Yen, S.-J. Shih, W.-C. Lin, Journal of Alloys and Compounds. 695, 2365-2373 (2017).

    [2-X] C.-C. Hsu, C.-M. Liu, Z.-Y. Lin, and W.C. Lin, Journal of Alloys and Compounds. 785, 436-444 (2019).

    [2-14] R.K. Biroju, D. Das, R. Sharma, S. Pal, L. P. L. Mawlong,
    K. Bhorkar, P. K. Giri, A. K. Singh, and T. N. Narayanan, ACS Energy Lett. 2, 1355−1361 (2017).

    [2-15] G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafar, R. Kumar,
    S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang, and L. Cao, J. Am. Chem. Soc. 138, 16632−16638 (2016).

    [2-16] W. Wu, D. De,. S.-C. Chang, Y. Wang, H. Peng, J. Bao, and S.-S. Pei, Appl. Phys. Lett. 102, 142106 (2013).

    [2-17] C. Kuru, C. Choi, A. Kargar, D. Choi, Y. J. Kim, C. H. Liu, S. Yavuz, and S. Jin, Adv. Sci. 2, 1500004 (2015).

    [2-18] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X.- Chen, and W. Lu, small. 11, 20, 2392–2398 (2015).

    [2-19] A. Yan, Y. Hua, and V. P. Dravid, Appl. Phys. Lett. 108, 091901 (2016).

    [2-20] J.S. Yang, D. Jie, N Chandrasekhar, and C. Joachim, Journal of Physics: Conference Series 61 1288–1293 (2007).

    [2-21] M. Cook, R. Palandech, K. Doore, Z. Ye, G. Ye, R. He, and A. J. Stollenwerk, Physucal Review B. 92, 201302(R) (2015).

    [2-22] C.-C. Hsu, H.-C. Chiu, V. R. Mudinepalli, Y.-C. Chen, P.-C. Chang, C.-T. Wu, H.-W. Yen, W.-C. Lin, Applied Surface Science. 416, 133–143 (2017).

    [2-23] L.-Y. Gan, Q. Zhang, Y. Cheng, and U. Schwingenschlӧgl, J. Phys. Chem. Lett. 5, 1445−1449 (2014).

    [2-24] S. Bertolazzi, D. Krasnozhon, and A. Kis, ACS Nano. 7, 4, 3246–3252 (2013).

    [2-28] X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, and H. Zhang, Nature Communications. 4, 1444 (2013).

    [2-29] Y.-H. Shen, C.-C. Hsu, P.-C. Chang, and W.-C. Lin, Appl. Phys. Lett. 114, 181601 (2019).

    [2-30] B. Liu, Z. Zhang, K. Liao, R. Wu, C. Zhu, H. Xie, C. Zha, Y.- Yin, X. Jiang, S. Qin, W. Wang, G. Ouyang, T. Qin, L. Wang, and W. Huang, Applied Surface Science. 523, 146371 (2020).

    [2-31] R. Chen, C. Lin, H. Yu, Y. Tang, C. Song, L. Yuwen, H. Li, X. Xie, L. Wang, and W. Huang, Chem. Mater. 28, 4300−4306 (2016).

    [2-32] J. Sun, Y. Choi, Y. J. Choi, S. Kim, J.-H. Park, S. Lee, and J. H. Cho, Adv. Mater. 31, 1803831 (2019).

    [2-33] H. Li, B. C-K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, J. Am. Chem. Soc. 134, 5, 2760–2765 (2012).

    [2-34] Y. H. Kim, S. Schubert, R. Timmreck, L. M.-Meskamp, and K. Leo, Adv. Energy Mater. 10.1002, 201300658 (2013).

    [2-35] R. W. Lof, M. A. van Veenendaal, B. Koopmans, H. T. Jonkman, and G. A. Sawatzky, Phys. Rev. Lett. 68 3924 (1992).

    [2-36] M. Remˇskar, A. Mrzel, A. Jesih, J. Kovaˇc, H. Cohen, R. Sanjin
    ´es, F. L´evy, Adv. Mater. 17, 911 (2005).

    [2-37] J. Guan, J. Wu, D. Jiang, X. Zhu, R. Guan, X. Lei, P. Du, H. Zeng, S.- Yang, and I. J. Hydrog, Energy. 43, 8698-8706 (2008).

    [2-38] H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, ACS Nano 10, 5230 (2016).

    [2-39] J. Abrefah, D. R. Olander, M. Balooch, and W. J. Siekhaus,
    Appl. Phys. Lett. 60, 1313 (1992).

    [2-40] A. Tokmakoff, D.R. Haynes and SM. George, Chem. Phys. Lett.
    186, 450(1991).

    [2-41] D. Ding, J. Huang, R. N. Compton, C. E. Klots, and R. E. Haufler,
    Phys. Rev. Lett. 73, 1084 (1994).

    [2-42] C. Rice, R. J. Young, R. Zan, and U. Bangert, Physical Review B. 87, 081307(R) (2013)

    [3-x] D.A. King and D.P. Woodruff, Growth and Properties of Ultrathin Epitaxiat Layers (1997).

    [3-1] B. D. Cullity, and C. D. Graham, Introduction to Magnetic Materials (2008).

    [3-2] B. W. Lee, R. Alsenz, and A. Ignatiev, Physical Review B. 17, 4, (1978).

    [3-3] R. Delmelle and J. Proost, Phys. Chem. Chem. Phys. 13, 11412, (2011).

    [3-4] Steven G. Louie, Phys. Rev. Lett., 42, 476 (1979).

    [3-6] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, PNAS. 102, (30) 10451-10453 (2005).

    [3-7] T. Spalvins Journal of Vacuum Science & Technology A 5, 212 (1987).

    [3-8] H. Li, X. Qi, J. Wu, Z. Zeng, J. Wei, and H. Zhang, ACS Nano. 7, 3, 2842–2849 (2013).

    [3-9] H.J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, Jr., S. T. Pantelides, and K. I. Bolotin, Nano Lett. 3, 3626−3630 (2013).

    [3-10] K. He, C. Poole, K. F. Mak, and J. Shan, Nano Lett. 13, 2931−2936 (2013).

    [3-11] P. Tao, H. Guo, T. Yang, and Z. Zhang, Journal of Applied Physics, 115, 054305 (2014).

    [3-15] K. Zhao, Y. Xing, J. H. a, J. Feng, W. Shi, B. Zhang, Z. Zeng, Journal of Magnetism and Magnetic Materials. 432, 10–13 (2017).

    [3-16] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnology, 6, 47–150 (2011).

    [3-17] J. A. Stewart, and D. E. Spearot, Modelling Simul. Mater. Sci. Eng. 21 045003 (2013).

    [3-18] S. Mouri, Y. Miyauchi, and K. Matsuda, Nano Lett. 13, 5944−5948 (2013).

    [3-19] P. A. Bertrand, Physical Review B. 44, 11 (1991).

    [3-20] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano. 4, 5, 2695–2700 (2010).

    [3-25] 林宗佑, 國立臺灣師範大學, 碩士論文二維材料介面導致鐵薄膜磁耦合分離現象 (2018).

    [3-21] A. Kuc, N. Zibouche, and T. Heine, Physical Review B. 83, 245213 (2011).

    [3-22] Voigtländer, Scanning Probe Microscopy (Springer, 2015).

    [3-23] J.R. Ferraro, Introductory Raman Spectroscopy, 2nd ed. (Academic Press) (2002).

    [3-24] E.N. Kaufmann, Characterization of Materials 2nd ed (2012).

    [4-1] C.-H.-T. Chang, W.-H. Kuo, Y.-C. Chang, J.-S. Tsay, and S.-L. Yau, Sci. Rep. 7 43700 (2017)

    [4-2] W. C. Lin, B. Y. Wang, Y. W. Liao Ker-Jar Song, and Minn-Tsong Lin, Phys. Rev. B 71 184413 (2005).

    [4-4] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surface Science. 602, 241–248 (2008).

    [4-5] W.C. Lin, C.-C. Kuo, M.-F. Luo, K.-J. Song, and M.-T. Lin, Applied Physics Letters. 86, 043105 (2005).

    [4-6] I.N. Kholmanov, L. Gavioli, M. Fanetti, M. Casella, C. Cepek,C. Mattevi, and M. Sancrotti, Surface Science. 601,188–192 (2007).

    [4-7] W.-C. Lin, Y.-Y. Huang, T.-Y. Ho, and C.-H. Wang, Applied Physics Letters 99, 172502 (2011).

    [4-8] J. Pommier, P. Meyer, G. Penissard, J. Ferre P. Bruno, and D. Renard
    Physical Review Letters. 65, 16 (1990).

    [4-9] K. Ohashi, H. Takagi, S. Tsunashima, S. Uchiyama, and T. Fujii, Journal of Applied Physics. 50, 1611 (1979).

    [5-2] H.-L. Liu, H. Guo, T. Yang, Z. Zhang, Y. K., C.-C. Shen, Y.-T. Hsu, L.-J. Li, R. Saito, and Sa. Kawata, Phys.Chem.Chem.Phys. 17, 14561 (2015).

    [5-3] U. Bhanu, M. R. Islam, L. Tetard, and S. I. Khondaker, Scientific Reports volume 4, 5575 (2014).

    [5-4] C.S. Chi, B.Y. Wang, W.-F. Pong, T.-Y. Ho, C.-J. Tsai, F.-Y. Lo, M.-Y. Chern, and W.-C. Lin, J. Appl. Phys. 111, 123918 (2012).

    [5-5] P.-C. Chang, C.-M. Liu, C.-C. Hsu, and W.-C. Lin, Scientific Reports.8, 6656 (2018).

    [5-6] V.R. Mudinepalli, C.J. Tsai, Y.C. Chuang, N. Plusnin, and W.C. Lin, Appl. Surf. Sci. 366, 38 (2016).

    [6-1] H. Yuan, G. Cheng, L. You, H. Li, H. Zhu, W. Li, J. J. Kopanski, Y. S. Obeng, A. R. H. Walker, D. J. Gundlach, C. A. Richter, D. E. Ioannou, and Q. Li, ACS Appl. Mater. Interfaces. 7, 2, 1180–1187 (2015)

    [6-2] L. Z. Mezey, and J. Giber, Jpn. J. Appl. Phys. 21 1569 (1982)

    [6-3] S. Brunauer, D. L. Kantro, and C. H. Weise, Can. J. Chem. 34, 1483 (1956).

    [6-4] A. P. S. Gaur, S. Sahoo, M. Ahmadi, S. P. Dash, M. J.-F. Guinel, and R. S. Katiyar, Nano Lett. 14, 4314 (2014).

    [6-5] Y. Guo, Z. Wang, L. Zhang, X. Shena, and F. Liu, Phys. Chem. Chem. Phys. 18, 14449 (2016).

    [6-6] S. S. Grønborg, S. Ulstrup, M. Bianchi, M. Dendzik, C. E. Sanders, J. V.
    Lauritsen, P. Hofmann, and J. A. Miwa, Langmuir 31, 9700 (2015).

    [6-7] H. Zhou, F. Yu, C. F. Guo, Z. Wang, Y. Lan, G. Wang, Z. Fang, Y. Liu, S. Chen, L. Sunb, and Z. Rena, Nanoscale 7, 9153 (2015).

    [6-8] C. Maurel, F. Ajustron, R. Pechou, G. Seine, and R. Coratger, Surf. Sci. 600, 442 (2006).

    [6-9] A. Carladous, R. Coratger, F. Ajustron, G. Seine, R. Pechou, and J. Beauvillain, Phys. Rev. B 66, 45401 (2002).

    [7-1] M. Sakurai, H. Tada, K. Saiki, and A. Koma, Jpn. J. Appl. Phys. 30 L1892 (1991).

    [7-2] K. Tanigaki, S.Kuroshima, J.i. Fujita, and T. W. Ebbesen, Appl. Phys. Lett. 63, 2351 (1993)

    [7-3] C.-C. Hsu, K.-L. Hsu, P.-C. Chang, S.-Y. Liu, C.-C. Hsu, and W.-C. Lin, Nanotechnology 31 325701 (2020).

    [7-4] P. Milam, and M. Manfredini, J. Phys. Chem. 99, 16119-16120 (1995).

    [7-5] F. Yan, X.‐m. Bao, X.‐w. Wu, and H.-l. Chen Appl. Phys. Lett. 67, 3471 (1995).

    [7-6] S.-T. Yang, T. H. Yang, C.-I Lu, W.-H. Chang, K. B. Simbulan, and Y.-W. Lan, Carbon. 176, 440-445 (2021)

    [7-7] T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, Materials Letters. 64, 399–401 (2010)

    [9-1] K. Tarawneh, N.Al-Aqtash, and R. Sabirianov, Computational Materials Science. 124, 15–22 (2016)

    下載圖示
    QR CODE