研究生: |
陳彥儒 Chen, Yen-Ju |
---|---|
論文名稱: |
應用手機信令軌跡資料推估通勤廊道之時空地震災害風險 Estimation of space-time traffic corridor earthquake risk exposure based on cellular trajectory data |
指導教授: |
張國楨
Chang, Kuo-Chen |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 手機信令資料 、時空分析 、地震災害風險評估 |
英文關鍵詞: | CDR, time-space analysis, earthquake disaster risk assessment |
DOI URL: | http://doi.org/10.6345/NTNU202000994 |
論文種類: | 學術論文 |
相關次數: | 點閱:163 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣由於地理位置的特殊性,地震、颱風等自然災害頻傳。統計自民國47年至108年為止,平均每年發生3.6次颱風,地震為0.5次。儘管地震發生次數較少,但平均每次所造成的社會經濟損失卻最為慘重。身處如此的環境之中,更是突顯了災害風險評估的重要性。在評估災害風險時,往往忽略了風險的時間動態特性,無法在更細緻的時空尺度上提供災害防救決策。而手機信令資料能夠以較低的成本取得真實的人口動態暴露數據。本研究藉由此數據在風險評估中加入人口移動的時空動態特性,切分不同的時間區段,藉此挖掘並觀察通勤廊道的地震災害風險時空模式,改善以往假定靜態災害風險的不足。
研究成果顯示: 廊道暴露度與風險值皆由06:00急遽上升,12:00稍趨緩,直到接近17:00時再度上升並達到最高值,隨後逐漸下降至隔日凌晨。空間分布則是以中正路、中山路、國道10號為主要風險高峰廊道。廊道的風險時空分布以新興熱點分析後得知,凌晨至通勤尖峰與中午至通勤尖峰這兩個時段呈現較高風險熱點強度,但時間趨勢上前者熱點較晚出現,後者熱點則是逐步增強。災害風險的時空模式探勘結果,能夠在減災階段上提升風險知覺;在整備階段,能夠協助兵棋推演腳本的擬定、並且以更細緻的時空尺度規劃設備物資的調度、以及交通的規劃,增強地方的災害應對能力。
Due to the special geographical location of Taiwan, hazards such as earthquakes and typhoons are frequent. According to statistics, from 1948 to 2019, typhoons occur 3.6 times per year, and earthquakes occur 0.5 time per year. Although there are fewer earthquakes than typhoons, the average social and economic losses caused by earthquakes each time are more serious. Such an environment background highlights the importance of disaster risk assessment. When assessing disaster risk, the space-time dynamic characteristics of risk are often ignored, and it is impossible to provide disaster prevention decisions on a more accurate space-time scale. In order to integrate space-time characteristics of population movement into risk assessment, Call Detail Record(CDR) data was used because it can provide more samples of real population dynamics at a lower cost. In this study, earthquake risks of the traffic in different time periods corridor was assessed to observe the space-time pattern, so that the lack of time dynamics in the past static disaster risk assessment can be improved.
The results of the research show that the corridor exposure and risk value both rise sharply from 06:00, until it slows down at 12:00. It rose again and reached the highest value near 17:00, and then gradually decreases to the early morning of the next day. Zhongzheng Road, Zhongshan Road, and National Highway no.10 are the main corridors where the peak of risk occur. The space-time risk distribution of corridors is analyzed based on emerging hotspots. The two time windows, “03:00 - 08:00” and “11:00 - 17:00” show higher risk hotspot intensity, but the former hotspot appears later in the time trend, while the latter hotspot gradually Intensified. The data mining results of the disaster risk space-time patterns can improve risk awareness in Mitigation phase, which can be benefitial in the preparation of Simulation Exercises in Preparedness phase. In addition, it can also help plan the dispatch of equipment and Supplies on a more accurate space-time scale, as well as transportation planning to enhance local capabilities when facing disasters.
Alexander, L.P., & González, M.C. (2015). Assessing the Impact of Real-time Ridesharing on Urban Traffic using Mobile Phone Data.
Aubrecht, C., Fuchs, S., & Neuhold, C. (2013). Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 68(3), 1205-1216.
Blondel, V. D., Decuyper, A., & Krings, G. (2015). A survey of results on mobile phone datasets analysis. EPJ data science, 4(1), 10.
Catmull, E., & Rom, R. (1974). A class of local interpolating splines. In Computer aided geometric design (pp. 317-326). academic Press.
Chen, G., Hoteit, S., Viana, A. C., Fiore, M., & Sarraute, C. (2018). Enriching sparse mobility information in Call Detail Records. Computer Communications, 122, 44-58.
Chen, K., McAneney, J., Blong, R., Leigh, R., Hunter, L., & Magill, C. (2004). Defining area at risk and its effect in catastrophe loss estimation: a dasymetric mapping approach. Applied Geography, 24(2), 97-117.
Cinnamon, J., Jones, S. K., & Adger, W. N. (2016). Evidence and future potential of mobile phone data for disease disaster management. Geoforum, 75, 253-264.
FEMA, (2010) Hazus® MH MR5 Technical Manuals and User's Manuals ,Washington, D.C.
Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (Eds.). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press.
Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3).
Huayong Wang, Francesco Calabrese, Giusy Di Lorenzo, Carlo Ratti. (2010). Transportation mode inference from anonymized and aggregated mobile phone call detail records. Annual Conference on Intelligent Transportation Systems, 19-22
Kendall M.G. (1975). Rank Correlation Methods, Charles Griffin, London, UK.
Khan, H., Vasilescu, L. G., & Khan, A. (2008). Disaster management cycle-a theoretical approach. Journal of Management and Marketing, 6(1), 43-50.
Järv, O., Tenkanen, H., & Toivonen, T. (2017). Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation. International Journal of Geographical Information Science, 31(8), 1630-1651.
Lind, A., Hadachi, A., & Batrashev, O. (2017). A new approach for mobile positioning using the CDR data of cellular networks. In 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 315-320). IEEE.
Lindsay, B. R. (2012). Federal emergency management: A brief introduction. Congressional Research Service, Library of Congress.
Long, J. A. (2016). Kinematic interpolation of movement data. International Journal of Geographical Information Science, 30(5), 854-868.
Mann, H.B. (1945). “Non-parametric test against trend.” Econometrica. 13:245-259.
Marguerite Nyhan, Sebastian Grauwin, Rex Britter, Bruce Misstear, Aonghus McNabola, Francine Laden, Steven R. H. Barrett, Carlo Ratti. (2016). “Exposure Track"—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution. Environ. Sci. Technol, 50(17), 9671-9681
Md. Shahadat Iqbal, Charisma F. Choudhury, Pu Wang, Marta C. González. (2014. )Development of origin–destination matrices using mobile phone call data. Transportation Research Part C, 40(2014), 63-74
Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, Andrew T. Campbell.(2010). A survey of mobile phone sensing. IEEE Communications Magzines, 48(9), 5560598
Nirupama, N. (2012). Risk and vulnerability assessment: a comprehensive approach. International Journal of Disaster Resilience in the Built Environment, 3(2), 103-114.
Parzen, E. (1962). On estimation of a probability density and mode Ann. Math. Stat, 33, 1065-76.
R. Ahas, A. Aasa, Y. Yuan, M. Raubal, Z. Smoreda, Y. Liu, C. Ziemlicki, M. Tiru & M. Zook (2015) Everyday space–time geographies: using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical Information Science, 29(11), 2017-2039
Renner, K., Schneiderbauer, S., Pruß, F., Kofler, C., Martin, D., & Cockings, S. (2018). Spatio-temporal population modelling as improved exposure information for risk assessments tested in the Autonomous Province of Bolzano. International journal of disaster risk reduction, 27, 470-479.
Robinson, L. (2017). Words into Action Guidelines: National Disaster Risk Assessment, special topic: Earthquake Hazard and Risk Assessment. United Nations Office for Disaster Risk Reduction (UNISDR).
Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the National Academy of Sciences of the United States of America, 42(1), 43.
Shaw, S. L., Tsou, M. H., & Ye, X. (2016). Human dynamics in the mobile and big data era. International Journal of Geographical Information Science, 30(9), 1687-1693.
Shaw, S. L., Yu, H., & Bombom, L. S. (2008). A space‐time GIS approach to exploring large individual‐based spatiotemporal datasets. Transactions in GIS, 12(4), 425-441.
Smith, A., Martin, D., & Cockings, S. (2016). Spatio-temporal population modelling for enhanced assessment of urban exposure to flood risk. Applied Spatial Analysis and Policy, 9(2), 145-163.
Smith, K. (2003). Environmental hazards: assessing risk and reducing disaster. Routledge.
Steenbruggen, J., Tranos, E., & Nijkamp, P. (2015). Data from mobile phone operators: A tool for smarter cities?. Telecommunications Policy, 39(3-4), 335-346.
Tatem, A. J., Huang, Z., Narib, C., Kumar, U., Kandula, D., Pindolia, D. K., ... & Lourenço, C. (2014). Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning. Malaria journal, 13(1), 52.
Toole, J. L., Ulm, M., González, M. C., & Bauer, D. (2012). Inferring land use from mobile phone activity. Proceedings of the ACM SIGKDD International Workshop on Urban Computing, 1-8.
Wesolowski A, Stresman G, Eagle N. (2014). Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones. Sci Rep, 14(4):5678
Wilson R, zu ErbachSchoenberg E, Albert M, Power D, Tudge S, Gonzalez M, Guthrie S, Chamberlain H, Brooks C, Hughes C, Pitonakova L, Buckee C, Lu X, Wetter E, Tatem A, Bengtsson L.(2016)Rapid and near Realtime Assessments of Population Displacement Using Mobile Phone Data Following Disasters: The 2015 Nepal Earthquake. PLOS Currents Disasters.
Xiang Cheng ; Luoyang Fang ; Xuemin Hong ; Liuqing Yang. (2017). Exploiting Mobile Big Data: Sources, Features, and Applications. IEEE Network, 31(1), 1500295NM
Yang Xu, Shih-Lung Shaw, Ziliang Zhao, Ling Yin, Feng Lu, Jie Chen, Zhixiang Fang & Qingquan Li (2016) Another Tale of Two Cities: Understanding Human Activity Space Using Actively Tracked Cellphone Location Data. Annals of the American Association of Geographers, 106(2), 489-502
Yu, B., & Kim, S. H. (2006). Interpolating and using most likely trajectories in moving-objects databases. In International Conference on Database and Expert Systems Applications (pp. 718-727). Springer, Berlin, Heidelberg.
Yu, B., Kim, S. H., Bailey, T., & Gamboa, R. (2004). Curve-based representation of moving object trajectories. In Proceedings. International Database Engineering and Applications Symposium, 2004. IDEAS'04. (pp. 419-425). IEEE.
王价巨。 (2010)。氣候變遷 災害管理新挑戰。 營建知訊, (327), 8-14.
王晉元 (2019)。應用旅次特性大數據精進公共運輸服務計畫(編號:107-IEB016)。台北市:交通運輸研究所。
何明錦、 洪鴻智、 陳建忠、 陳令韡、 簡長毅、 陳素櫻、 王暉堯 (2009) 。 綜合性地震脆弱度與風險評估: 以新竹市爲例。 建築學報, (70_S), 111-126.
洪鴻智、 陳令韡 (2012)。 颱洪災害之整合性脆弱度評估-大甲溪流域之應用. 地理學報, (65), 79-96.
國家地震工程研究中心 (2016) 。 台灣地震損失評估系統(TELES)使用手冊
國家災害防救科技中心 (2016) 。 地震衝擊資訊平台(TERIA)使用資料與模式說明手冊
莊睦雄、 楊礎毓、 林文苑 (2017) 。 TELES與TERIA地震分析在防救災決策之研析--以宜蘭縣災害防救演練為例。 設計學年刊, (5),
陳人卿、 吳昱龍、 劉晏余、 吳秉儒、 林佳瑩 (2018) 。 地震引致台北都會區重要設施衝擊情境分析-以大阪北部地震反思台灣地震災害。 臺灣災害管理研討會, 54-64.
黃凱昀 (2016) 。 地震災害之人口暴露度時空特性研究—以台南市國華友愛商圈為例。 成功大學都市計劃學系學位論文, 1-81.
楊惠萱、陳怡臻、李欣輯 (2014) 。 天然災害社會脆弱度指標之建立及評估: 以鄉鎮層級為例。 災害防救科技與管理學刊, 3(2), 71-93.
劉淑燕、吳佳容、李沁妍、鄧敏政、李洋寧、李中生、柯孝勳、簡賢文(2014)。大臺北地區大規模地震衝擊情境分析報告II:道路系統、水電設施、重要設施、情境綜整。 NCDR 102-T15。
蕭煥章 (2008). 鄉鎮市區水災脆弱度評估模式之研究。 華岡地理學報, (21), 1-18.
謝馨頤、 康玉萱、 洪文孝、 吳佳容、 劉淑燕 (2016) 。 地震網格建置與衝擊分析應用-以新城斷層為例。 2016 臺灣災害管理學會十週年年會, 10-1.
蘇昭郎、黃詩倩、陳禹銘 (2009)。災害風險評估研究之探討。災害防救電子報,48,1-10。
Esri(無日期)。How Kernel Density works,《Tool Reference》。https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm。(2019/10/18 瀏覽)
科技部 (無日期)。風險指標如何計算?,《災害管理資訊研發應用平台》。取自http://dmip.tw/Lthree/2017/riskapp/report/2_5.aspx?counted=1。(2019/10/15 瀏覽)