研究生: |
林淑芬 Su-Fen Lin |
---|---|
論文名稱: |
含碲之過渡金屬(鉻.錳.釕)團簇化合物之合成與系統性研究 Sythesis and Systematic Study of Metal Clusters Containing Tellurium ligands |
指導教授: |
謝明惠
Shieh, Ming-Huey |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 173 |
中文關鍵詞: | 過渡金屬團簇化合物 、含碲之化合物 、三角錐封閉結構 、半橋接羰基 、超分子化合物 、電化學分析 、紅外線光譜儀 、空氣敏感物質 |
英文關鍵詞: | Metal cluster, Tellurium ligands, Trigonal bipyramidal strucrure, Semibridging CO, Supra molecule, Metal cluster wires, IR, Air sensitive |
論文種類: | 學術論文 |
相關次數: | 點閱:202 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] 碲(Te)-鉻(Cr)系統的研究
使用主族氧化物TeO2與2當量之Cr(CO)6及Et4NBr,在鹼性甲醇溶液中加熱反應,可得雙三角錐化合物[Et4N]2[Te2Cr3(CO)10]。於室溫時,Te與Cr(CO)6分別於NaOH或KOH為鹼之甲醇溶液反應,會產生[Te{Cr(CO)5}2]2-與中間物[Te{Cr(CO)5}3]2-,但是產物比例不同,顯示鹼的種類會影響反應結果;然而於高溫下,則均可得[MeTe{Cr(CO)5}2]-,具有活化C-O鍵的能力。
[Te{Cr(CO)5}2]2-反應性的探討: (a)可藉由不同比例之甲基化試劑MeOTf進行化合物的轉換,並釐清化合物[Te{Cr(CO)5}2]2-、[MeTe{Cr(CO)5}2]-與[Me2Te{Cr(CO)5}2]的轉換關係。(b)與異核金屬羰基化合物Mn(CO)5Br、M(CO)6( M = Cr、Mo )反應,均可得到開放結構( arachno )混合金屬的化合物[Te2M2Cr2(CO)18]2-( M = Mn、Mo、W )。
[2] 碲(Te)-錳(Mn)系統的研究
進一步釐清Te-Mn加熱反應系統中化合物轉變之關係,[Te2Mn3(CO)9]- 無法由直接加熱生成,其與Mn2(CO)10/ KOH反應,並無預期之核擴大產物產生。對其中不符合電子計算之化合物[Te2Mn3(CO)9]2-、[Te4Mn6(CO)20]2-作磁性分析,結果顯示此二個化合物為順磁性( paramagnetic )物質,且後者具有罕見高自旋( high spin )基態,為分子磁石的前趨物。
[Te2Mn3(CO)9]-與MeOTf於室溫反應,可得雙甲基化合物{(MeTe)2Mn2(CO)8},並對此化合物進行電化學、光譜分析。
[3] 碲(Te)-釕(Ru)系統的研究
以莫耳數比1 : 1的K2TeO3與Ru3(CO)12於甲醇溶液中加熱,反應生成少量的[HTeRu3(CO)9]-與[TeRu5(CO)14]2-,在不單離產物的情況下,與[Cu(CH3CN)4][BF4]混合反應,生成八面體(Oh)化合物[Te2Ru4(CuBr)2(CO)10]2-,此化合物除了一Ru-Ru對邊有羰基橋接外,於另一對邊為CuBr為橋接配基。對此產物進一步探討,並加入AgBF4反應企圖拔掉Br,以期形成聚合物(polymer)。
[1] Te-Cr system
Refluxing of TeO2 with Cr(CO)6 and Et4NBr in basic methanol solution yields the closo-cluster complex [Et4N]2[Te2Cr3(CO)10]. Using NaOH or KOH as the different base source affects the ratio of products for the reaction of Te and Cr(CO)6 in MeOH solution. However, both conditions lead to the formation of [MeTe{Cr(CO)5}2]- via the direct C-O bond activation in forced conditions.
[Te{Cr(CO)5}2]2- can be stepwisely methylated with MeOTf to form [MeTe{Cr(CO)5}2]- and [Me2Te{Cr(CO)5}2] respectively. On the other hand, reaction of [Te{Cr(CO)5}2]2- with Mn(CO)5Br or M(CO)6 ( M = Mo、W ) gives the mixed-metal clusters [Te2M’2Cr2(CO)18]2- ( M’ = Mn、Mo、W ), each of which displays an open Te2M2 ring geometry.
[2] Te-Mn system
Oxidation of [Te2Mn3(CO)9]2- with Hg(OAc)2 forms the trigonal bipyramidal cluster [Te2Mn3(CO)9]- in high yield, which otherwise can not be prepared from thermal reaction of K2TeO3 with Mn2(CO)10 in methanol solution. When [Te2Mn3(CO)9]- is treated with MeOTf, the methylated product (MeTe)2Mn2(CO)8 is obtained.
A novel new cluster, [Te4Mn6(CO)20]2- can be obtained from the slow diffusion of O2 into the [Te2Mn3(CO)9]2- solution. Both Te-Mn species are paramagnetic complexes. [Te4Mn6(CO)20]2-, especially, has a high-spin ground state and is a good candidate to be a single-molecule-magnet (SMM).
[3] Te-Ru system
Refluxing of K2TeO3 with Ru3(CO)12 in methanol solution produces [HTeRu3(CO)9]- and [TeRu5(CO)14]2-. If the reaction solution is further treated with [Cu(CH3CN)4][BF4], the octahedral mixed-metal cluster anion [Te2Ru4(CuBr)2(CO)10]2- is obtained. Finally, to design a super cluster wire, [Te2Ru4(CuBr)2(CO)10]2- is treated with AgBF4 with an aim at removing the terminal Br atom to form an infinitive chain complex.
1. (a)Gates, B. C., Ed. Metal Clusters in Catalysis; Amsterdam, 1986. (b)Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033.
2. Muetterties, E. L. Bull. Soc. Chim. Belg. 1975, 84, 959.
3. Haak, S.; Neels, A.; Stoeckli-Evans, H.; Suss-Fink, G.; Thomas, C. M. Chem. Commun. 1999, 1959.
4. Suss-Fink, G.; Herrmann, G. J. Chem. Soc., Chem. Commun. 1985, 735.
5. (a)Churchill, M. R.; Fettinger, J. C.; Whitmire, K. H.; J. Organomet. Chem. 1985, 284, 13. (b)Whitmire, K. H. J. Coord. Chem. 1988, 17, 95. (c)Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1986, 25, 56. (d)Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem. 1990, 31, 91. (e)Mathur, P.; Chakrabarty, D.; Mavunkal, I. J. J. Cluster Sci. 1993, 4, 351.
6. Reynolds, M. A.; Guzei, I. A.; Logston, B. C.; Thomas, L. M.; Jacobson, R. A.; Angelici, R. J. Organometallics 1999, 18, 4075.
7. Riaz, U.; Curnow, O.; Curtis, M. D. J. Am. Chem. Soc. 1991, 113. 1416.
8. (a)Saalfank, R. W.; Trummer, S.; Krautscheid, H.; Schunemann, V.; Trautwein, A. X.; Hien, S.; Stadler, C.; Daub, J. Angew. Chem., Int. Ed. Engl. 1996, 35, 2206. (b)Powell, A. K.; Heath, S. L.; Gatteschi, D.; Pardi, L.; Sessooli, R.; Spina, G.; Giallo, F. D.; Pieralli, F. J. Am. Chem. Soc. 1995, 117, 2491. (c)Zhou, J.; Raebiger, J. W.; Crawford, C. A.; Holm, R. H. J. Am. Chem. Soc. 1997, 119, 6242.
9. (a)Eady, R. R.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1994, 2739. (b)Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389. (c)Hodgson, K. O.; Hongbin, I. L.; Filipponi, A.; Gavini, N.; Burgess, B. K.; Hedman, B.; Cicco, A. D.; Natoli, C. R. J. Am. Chem. Soc. 1994, 116, 2418. (d)Masumori, T.; Seino, H.; Mizobe, Y.; Hidai, M. Inorg. Chem. 2000, 39, 5002.
10. Banerjee, S.; Kumar, G. R.; Mathur, P.; Sekar, P. Chem. Commun. 1997, 299.
11. (a)Shi, S.; Ji, W.; Tang, S. H.; Lang, J. P. Xin, X. Q. J. Am. Chem. Soc. 1994, 116, 3615. (b)Ji, W.; Shi, S.; Du, H. J.; Ge, P.; Tang, S. H.; Xin, X. Q. J. Phys. Chem. 1994, 98, 3750. (c)Mathur, P.; Ghose, S.; Hossain, M. M. Organometallics 1997, 16, 3815.
12. (a)Caneschi, A.; Gatteschi, D.; Sessoli, R.; Barra, A. L.; Brunel, L. C.; Guillot, M. J. Am. Chem. Soc. 1991, 113, 5873. (b)Barra, A. L.; Caneschi, A.; Gatteschi, R. J. Am. Chem. Soc. 1995, 117, 8855. (c)Friedman, J. R.; Sarachik, M. P.; Tejada, J.; Maciejewski, J.; Ziolo, R. J. Appl. Phys. 1996, 79, 6031. (d)Eppley, J. J.; Tsai, H.-L.; De Vries, N.; Folting, K.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1995, 117, 301. (e)Boyd, P. D.; Li, Q.; Vincent, J. B.; Folting, K.; Chang, H.-R.; Streib, W. E.; Huffman, J. C.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1998, 120, 8573. (f)Schake, A. R.; Tsai, H.-L.; de Vries, N.; Webb, R. J.; Folting, K.; Hendrickson, D. N.; Christou, G. J. Chem. Soc., Chem. Commun. 1992, 181.
13. Inagaki, A.; Takemori, T.; Tanaka, M.; Suzuki, H. Angew. Chem., Int. Ed. Engl. 2000, 39, 404.
14. Inagaki, A.; Takemori, T.; Tanaka, M.; Suzuki, H. J. Am. Chem. Soc. 1999, 121, 7421.
15. (a)Whitmire, K. H.; Shriver, D. F. J. Am. Chem. Soc. 1981, 103, 6754. (b)Kolis, J. W.; Holt, E. M.; Drezdzon, M.; Whitmire, K. H.; Shriver, D. F. J. Am. Chem. Soc. 1982, 104, 6136. (c)Horwitz, C. P.; Shriver, D. F. Adv. Organomet. Chem. 1984, 23, 219. (d)Anson, C. E.; Bailey, P. J.; Conole, G.; Johnson, B. F. G.; Lewis, J.; McPartin, M.; Powell, H. R. J. Chem. Soc., Chem. Commun. 1989, 442.
16. (a)Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 1011. (b)Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 5721.
17. Schmid G. Angew. Chem., Int. Ed. Engl. 1978, 17, 392.
18. Standtman, T. C. Annu. Rev. Biochem. 1990, 59, 111.
19. (a)Bube, R. H. Annu. Rev. Mater. Sci. 1990, 20, 19. (b)Maier, H.; Hesse, J. Cryst. Growth : Prop. Appl. 1980, 4, 145.
20. Lenher, V.; Freuehan, A, G. J. Am. Chem. Soc. 1927, 49, 3076.
21. Herrmann, W. A.; Hecht, C.; Herdtweck, E.; Kneuper, H.-J. Angew. Chem., Int. Ed. Engl. 1987, 26, 132.
22. Brunner, H.; Janietz, N.; Meier, W.; Wachter, J.; Herdtweck, E.; Herrmann, W. A.; Serhadli, O.; Ziegler, M. L. J. Organomet. Chem. 1988, 347, 237.
23. Whitmire, K. H. J Coord. Chem. 1988, 17, 95.
24. Faggiani, R.; Gillespie, R. J.; Campana, C. F.; Kolis, J. W. J. Chem. Soc., Chem. Commun. 1987, 485.
25. Kanatzidis, M. G.; Das, B. K. Inorg. Chem. 1995, 34, 5721.
26. 楊惠雅,台灣師範大學碩士論文,2000.
27. 游宗憲,台灣師範大學碩士論文,2001.
28. (a)Braunstein, P.; Jud, J. M.; Tiripicchio, A.; Camellini, M. T.; Sappa, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 307. (b)Curtis, M. D.; Williams, P. D.; Duffy, D. N.; Butler, W. M. Organometallics 1983, 2, 165.
29. 吳美芬,台灣師範大學碩士論文,2001.
30. Roof, L. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1992, 31, 2056.
31. 何莉芳。台灣師範大學碩士論文,2000.
32. Rohrmauu, J.; Herrmann, W. A. J. Organomet. Chem. 1984, 273, 221.
33. (a)Darensbourg, D. J.; Zalewski, D. J. Organometallics 1984, 3, 1598. (b)Darensbourg, D. J.; Zalewski, D. J.; Sanchez, K. M.; Delord, T. Inorg. Chem. 1988, 27, 821.
34. O’Neel, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134.
35. 黃國智,台灣師範大學博士論文,1998.
36. Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421.
37. 陳鴻生,台灣師範大學碩士論文,1997.
38. Sun, Z.; Ruiz, D.; Rumberger, E.; Incarvito, C. D.; Folting, K.; Rheingold, A.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 1998, 37, 4758.
39. Mathur, P.; Thimmappa, B. H. S.; Rheingold, A. L. Inorg. Chem. 1990, 29, 4658.
40. Mathur, P.; Mavunkal, I. J.; Rugmini, V. Inorg. Chem. 1989, 28, 3616.
41. Mathur, P.; Thimmappa, B. H. S. J. Organomet. Chem. 1989, 365, 363.
42. Mathur, P.; Mavunkal, I. J.; Rugmini, V.; Mahon, M. Inorg. Chem. 1990, 29, 4836.
43. Huang, S.-P.; Kanatzidis, M. G. J. Am. Chem. Soc. 1992, 114, 5477.
44. 詹莉芬,台灣師範大學碩士論文,1997.
45. (a)Klufers, P. Angew. Chem., Int. Ed. Engl. 1985, 24, 70. (b)Draper, S. M.; Hattersley, A. D.; Housecroft, C. E.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1992, 1365. (c)Beswick, M. A.; Lewis, J.; Raithby, P. R.; Ramirez, M. C. J. Chem. Soc., Dalton Trans. 1996, 4033. (d)Beswick, M. A.; Lewis, J.; Raithby, P. R.; Ramirez, M. C. Angew. Chem., Int. Ed. Engl. 1997, 36, 291. (e)Beswick, M. A.; Lewis, J.; Raithby, P. R.; Ramirez, M. C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2227.