研究生: |
洪敏惠 |
---|---|
論文名稱: |
先進矽鍺元件之應力估算與效能分析 Stress estimation and performance analysis of advanced SiGe devices |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 李昌駿 Lee, Chang-Chun |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 有限元素分析 、矽鍺合金 、延伸閘極寬度 、變異數分析 |
英文關鍵詞: | Finite element analysis (FEA), SiGe stressor, extended poly gate width, ANOVA |
論文種類: | 學術論文 |
相關次數: | 點閱:303 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨電子產品輕薄短小及功能多樣化之潮流,傳統之矽基半導體元件已無法符合下一世代元件於速度或功能之要求,因此除藉由縮減元件特徵尺寸外,應變工程之導入對於奈微電子元件之效能提升益顯重要。然而,電路圖案化之影響諸如具突起之多晶矽閘極對窄通道元件之引致應力大小,相關文獻卻鮮少有完整地討論。
有鑑於此,本研究系統性地探討應變工程對於突出之多晶矽閘極寬度於具窄通道之P型半導體元件之性能表現。本論文分為兩部份,首先使用因子實驗設計概念結合有限元素之模擬法,對PMOS半導體元件進行應力模擬。分析時選擇四個重要設計因子,分別為延伸閘極寬度、源∕汲極長度、元件通道寬度,以及CESL內含應力值進行變異數分析,並討論其對於載子遷移率之影響性。由變異數分析可得知其因子重要影響程度前三項依序為CESL之應力值、CESL應力值與延伸閘極寬度兩因子間之交互作用,延伸閘極寬度。由上述分析獲知,延伸閘極寬度這一設計因子對於半導體元件其載子遷移率增益之影響為十分重要。其次,為了瞭解CESL應力與延伸閘極寬度兩因子間之交互作用關係,故於本研究使用中央合成設計法得到該因子間之反應曲面圖。藉由該曲面圖吾人可以進而獲得其優化之組合關係。
第二部份,由於在文獻中可得知矽鍺合金源/汲極長度愈長則P型半導體元件其阻值會隨之減少。因此對不同大小之延伸閘極寬度與矽鍺合金之源/汲極長度進行敏感度分析,討論元件不同方向其應力值與載子遷移率之增益。分析結果指出當延伸閘極寬度於0.2 m時,其所貢獻之載子遷移率為最大。
With the trend of multi-function and minimizing volume, traditional silicon-based semiconductor transistors have not met the performance requirements of next-generation devices. Consequently, in addition to diminish
the characteristic sizes of nano-scale transistors, an introduction of advanced strained engineering is significant to enhance their performances. However,
effects of pattern layouts such as different width of extended poly gate on narrow channel width on P-type metal oxide semiconductor field (PMOSFETs) has little reported as well as discussed completely.
For this reason, this investigation analyzes PMOSFETs with a combination of a narrow gate length and extended poly width by using three dimensional finite element simulations integrated with the concept of factorial design of experiments. In the first part of this thesis, four design factors, including extended poly width, source/drain length, gate length, and the magnitude of
CESL stressor, are selected to perform the analysis of variance (ANOVA) to confirm the interpretation and significance of effects for mobility gain of devices. The ANOVA results indicate that the effect importance is CESL
stressor, interaction between CESL stressor and extended poly gate width, and extend poly gate width in sequence. From the above-mentioned results, it is found that extended poly width plays an important role for the mobility
enhancement of devices. Moreover, for the purpose of investigating the interaction between CESL stressor and extended poly gate width, the central composite design is utilized to construct the contour of response surface.
Subsequently, the better combinations of the factors are suggested in this thesis.
In the second part, the sensitive analysis of stress effects within Si channel and corresponding mobility gains under the considerations of extended poly gate width and silicon germanium alloy embedded in the source/drain (S/D) region is implemented. The results point out that the mobility gain is maximum as the extended poly width is equal to 0.2 m.
[1] 劉傳璽,陳進來, 半導體物理元件與製程-理論與實務,五南出版社,2006。
[2] G. D. Wilk, R. Mallace and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations”, Journal of Applied Physics, vol. 89, pp. 5243-5275, 2001.
[3] G. E. Moore, “Cramming more components onto integrated circuits”, Proceedings of the IEEE, vol. 86, pp. 82-85, 1998.
[4] 鄭晃忠,劉傳璽,新世代積體電路製程技術,東華書局,2011。
[5] K. Rim, S. Koester, M. Hargrove, J. Chu, P.M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill and H. S. P. Wong, “Strained-Si NMOSFETs for high-performance CMOS technology”, Symposium on VLSI Technology, pp. 59-60, 2001.
[6] 劉恩科,朱秉升,羅晉生,半導體物理學,電子工業出版社,2006。
[7] K. Rim, R. Anderson, D. Boyd, F. Cardone, K. Chan, H. Chen, S. Christansen, J. Chua, K. Jenkins, T. Kanarsky, S. Koester, B. H. Lee, K. Lee, V. Mazzeo, A. Mocuta, D. Mocuta, P. M. Mooney, P. Oldiges, J. Ott, P. Ronsheim, R. Roy, A. Steegen, M. Yang, H. Zhu, M. Ieong and H. S. P. Wong, “Strained Si CMOS (SS CMOS) technology: opportunities and challenges”, Solid State Electronics, vol. 47, pp. 1133-1139, 2003.
[8] Y. C. Yeo, Q. Lu, T. J. King, C. Hu, T. Kawashima, M. Oishi, S. Mashiro and J. Sakai, , “Enhanced performance in sub-100 nm CMOSFETs using strained epitaxial silicon-germanium”, International Electron Devices Meeting, pp. 753-756, 2000.
- 81 -
[9] Y. C. Yeo and J. Sun, “Finite-element study of strain distribution in transistor with silicon-germanium source and drain regions”, Applied Physics Letters, vol. 86, pp. 023103-1-023103-3, 2005.
[10] C. H. Ge, C. C. Lin, C. H. Ko, C. C. Huang, Y. C. Huang, B. W. Chan, B. C. Perng, C. C. Sheu, P. Y. Tsai, L. G. Yao, C. L. Wu, T. L. Lee, C. J. Chen, C. T. Wang, S. C. Lin, Y. C. Yeo and C. Hu, “Process-strained-Si (PSS) CMOS technology featuring 3-D strain engineering”, International Electron Devices Meeting, pp. 73-76, 2003.
[11] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr and Y. E. Mansy, “A 90-nm logic technology featuring strained-silicon”, IEEE Transactions on Electron Devices, vol. 51, pp. 1790-1797, 2004.
[12] K. Rim, J. Welser, J. L. Hoyt and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si pMOSFETs”, International Electron Devices Meeting, pp. 517-520, 1995.
[13] J. Welser, J. L. Hoyt and J. F. Gibbons, “Electron mobility enhancement in strained-Si N-type metal-oxide-semiconductor field-effect transistors”, IEEE Electron Device Letters, vol. 15, pp.100-102, 1994.
[14] L. Washington, F. Nouri, S. Thirupapuliyur, G. Eneman, P. Verheyen, V. Moroz, L. Smith, X. Xu, M. Kawaguchi, T. Huang, K. Ahmed, M. Balseanu, L. Q. Xia, M. Shen, Y. Kim, R. Rooyackers, K. D. Meyer and R. Schreutelkamp, “pMOSFET with 200% mobility enhancement induced by
- 82 -
multiple stressors”, IEEE Electron Device Letters, vol. 27, pp. 511-513 2006.
[15] 林宏年,呂嘉裕,林鴻志,黃調元,局部與全面形變矽通道 (strained Si channel)互補式金氧半 (CMOS)材料、製程與元件特性分析(I),奈米通訊, vol. 12, pp. 44-49, 2002。
[16] J. Wu and X. Wang, “Stress engineering for 32nm CMOS technology node”, Solid State and Integrated Circuit Technology, pp. 113-116, 2008.
[17] S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando, S. Koyama, S. Kuroki, N. Ikezawa, T. Suzuki, T. Saitoh and T. Horiuchi, “Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design”, International Electron Devices Meeting, pp. 247-250, 2000.
[18] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashimoto and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node”, Symposium on VLSI Technology, pp. 54-55, 2004.
[19] S. Orain, V. Fiori, D. Villanueva, A. Dray and C. Ortolland, “Method for managing the stress due to the strained nitride capping layer in MOS transistors”, IEEE Transactions on Electron Devices, vol. 54, pp. 814-821, 2007. [20] S. E. Thompson, S. Suthram, Y. Sun, G. Sun, S. Parthasarathy, M. Chu and T. Nishida, “Future of strained Si/semiconductors in nanoscale MOSFETs”, International Electron Devices Meeting, pp. 1-4, 2006.
[21] Montgomery,Design and analysis of experiments,三版,實驗設計與分析,黎正中,高立圖書,2010。
- 83 -
[22] 劉晉奇、褚晴暉,有限元素分析與ANSYS的工程應用,蒼海書局, 2005。 [23] 康淵,陳信吉,ANSYS入門,全華出版社,2008。
[24] K. N. Chiang, C. H Chang and C. T. Peng, “Local-strain effects in Si/SiGe/Si islands on oxide”, Applied Physics Letters, vol. 87, pp. 191901-1 - 191901-3, 2005.
[25] N. Yasutakea, A. Azumaa, T. Ishidaa, K. Ohuchia, N. Aokia, N. Kusunokia, S. Morib, I. Mizushimab, T. Morookaa, S. Kawanakaa and Y. Toyoshima, “A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond”, Solid State Electronics, vol. 51, pp. 1437-1443, 2007.
[26] P. W. Liu, W. T. Chiang, Y. T. Huang, T. L. Tsai, C. H. Tsai, C. T. Tsai and G. H. Ma, “Improved layout dependence in high performance SiGe channel CMOSFETs”, Symposium on VLSI Technology, pp. 161-162, 2008.
[27] 黃弘一,混合訊號積體電路佈局與分析課程講義,2003。