研究生: |
林鈺庭 Lin, Yu-Ting |
---|---|
論文名稱: |
具有誤差回授架構的低功耗三階雜訊移頻逐次逼近式類比數位轉換器 A Low-Power Third-Order Noise-Shaping SAR ADC with an Error Feedback Architecture |
指導教授: |
郭建宏
KUO, Chien-Hung |
口試委員: |
郭建宏
KUO, Chien-Hung 陳建中 Chen, Jiann-Jong 黃育賢 Hwang, Yuh-Shyan |
口試日期: | 2025/01/03 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 誤差回授 、雜訊移頻逐次逼近暫存式類比數位轉換器 、互補自偏壓差分放大器接成的單位增益緩衝器 、單位增益緩衝器 、低功耗 |
英文關鍵詞: | Error-feedback, Noise-shaping SAR ADC, CSDA, Unity gain buffer, Low Power |
研究方法: | 實驗設計法 |
論文種類: | 學術論文 |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現代數位電子裝置中,類比數位轉換器扮演著至關重要的角色。它們廣泛應用於各種領域,包括通訊、醫療設備、工業控制、儀器儀表和消費性電子產品等。隨著科技無止盡的發展和應用的擴大,對低功耗、高精度和面積小類比數位轉換器的需求也日益增長,因此,我們將以提高效能為目標來設計類比數位轉換器。本文提出了一個具有誤差回授架構的低功耗三階雜訊移頻逐次逼近式類比數位轉換器。此電路僅用一顆單位增益緩衝器,有效減少整體的功率消耗與面積成本。所使用的單位增益緩衝器採用了互補自偏壓差分放大器接成的單位增益緩衝器,不需額外的共模回授和偏壓電路。此外,由於所提出的架構採用單位增益緩衝器和以乒乓式操作的延遲元件來傳遞量化誤差,無需考慮電容之間的匹配程度。與傳統的積分器比較起來,會有較佳的訊號準確度。此電路採用TSMC 0.18-μm 1P6M CMOS製程技術製作,所實現的晶片核心面積為0.417×0.669 mm2。此電路在2-MHz的取樣頻率及20-kHz的頻寬下,測得的最佳SNDR值為85.17 dB,相當於13.86-bit的ENOB。所提出的ADC在1.8-V電源電壓下的功率消耗為75.5 μW。FoMs為169.43 dB,FoMw為126.53 fj/Conv.。
In modern digital electronic devices, analog-to-digital converters (ADCs) play a crucial role. They find widespread use in numerous sectors, including communications, medical equipment, industrial control, instrumentation, and consumer electronics. With advancing technology and expanding application areas, there is an increasing demand for ADCs that are low power, high precision, and compact. Therefore, we aim to enhance ADCs focusing on low power consumption, high precision, and small footprint.This paper presents a low-power third-order noise-shaping SAR ADC with an error feedback architecture. The circuit uses only one unity-gain buffer, effectively reduce overall power consumption and area cost. The employed unity-gain buffer is a complementary self-biased differential amplifier (CSDA), eliminating the need for additional common-mode feedback and bias circuits. Moreover, since the proposed architecture employs unity gain buffers and delay elements operating in a ping-pong manner to deliver the quantization error, there is no need to consider the matching degree between capacitors. Compare with traditional integrators, there will be better signal accuracy.The proposed ADC fabricated in TSMC’s 0.18-μm 1P6M CMOS process technology, with a chip core area of 0.417×0.669 mm². It achieves an optimal SNDR of 85.17 dB at a sampling frequency of 2 MHz and a bandwidth of 20 kHz, corresponding to an ENOB of 13.86-bits. The power consumption of the proposed ADC at a 1.8-V supply voltage is 75.5 μW. The FoMs is 169.43 dB, and the FoMw is 126.53 fj/Conv..
[1] M. Bazes, “Two novel fully complementary self-biased CMOS differential amplifiers,” IEEE Journal of Solid-State Circuits, vol. 26, no. 2, pp.165-168, Feb. 1991.
[2] L. Jie, B. Zheng, H. -W. Chen and M. P. Flynn, “A Cascaded Noise Shaping SAR Architecture for Robust Order Extension,” IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3236-3247, Dec. 2020.
[3] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[4] J. McCreary and P. R. Gray, “A high-speed, all-MOS successive-approximation weighted capacitor A/D conversion technique,” IEEE International Solid-State Circuits Conference, Feb. 1975, pp. 38–39.
[5] C. Liu, S. Chang, G. Huang and Y. Lin, “A 10-bit 50-MS/s SAR AD C With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[6] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel, “A Low-Voltage MOSFET-Only ΣΔ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” IEEE International Symposium on Circuits and Systems, May 2001, pp. 376-379.
[7] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp ΣΔ Modulator in Standard Digital CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669 Dec. 2002.
[8] B. Razavi, “The bootstrapped switch [a circuit for all seasons],” IEEE Solid State Circuits Mag., vol. 7, no. 3, pp. 12–15, Summer 2015.
[9] B. Razavi, “TSPC Logic [A Circuit for All Seasons],” IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 10-13, Fall 2016.
[10] H. Y. Tai, Y. S. Hu, H. W. Chen and H. S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2014, pp. 196-197.
[11] X. Tang, L. Chen, J. Song and N. Sun, “A 1.5fJ/conv-step 10b 100kS/s SAR ADC with gain boosted dynamic comparator,” IEEE Asian Solid-State Circuits Conference, Nov. 2017, pp. 229-232.
[12] S. E. Hsieh and C. C. Hsieh, “A 0.44-fJ/Conversion-Step 11-Bit 600-kS/s SAR ADC With Semi Resting DAC,” IEEE Journal of Solid-State Circuits, vol. 53, no. 9, pp. 2595-2603, Sep. 2018.
[13] K. Jeong et al., “A PVT-Robust AFE-Embedded Error-Feedback Noise-Shaping SAR ADC With Chopper-Based Passive High-Pass IIR Filtering for Direct Neural Recording,” IEEE Transactions Biomedical Circuits Systems., vol. 16, no. 4, pp. 679-691, Aug. 2022.
[14] L. Lv, X. Zhou, Z. Qiao and Q. Li, “Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V Delta-Sigma Modulators,” IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1436-1445, May 2019.
[15] Mohammad Honarparvar, José M. de la Rosa, and Mohamad Sawan, “A 0.9-V 100-μW Feedforward Adder-Less Inverter-Based MASH Delta Sigma Modulator With 91-dB Dynamic Range and 20-kHz Bandwidth,” IEEE Transactions on Circuits and Systems–I: Regular Papers, Vol. 65, No. 11, November 2018.
[16] J. -S. Huang, S. -C. Kuo and C. -H. Chen, “A Multistep Multistage Fifth-Order Incremental Delta Sigma Analog-to-Digital Converter for Sensor Interfaces,” IEEE Journal of Solid-State Circuits, vol. 58, no. 10, pp. 2733-2744, Oct. 2023.
[17] Z. Li et al., “A 16.5-μW 73.7-dB-SNDR Second-Order Fully Passive Noise-Shaping SAR ADC With a Hybrid Switching Procedure,” IEEE Access, vol. 11, pp. 89298-89308, 2023.
[18] S. Yu and M. L. Johnston, “A 99.1-dB SFDR, 87.1-dB SNDR, 50-kS/s 3rd-Order Continuous-Time Incremental ADC With Current-Controlled-Oscillator Quantizer, ” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 12, pp. 4799-4803, Dec. 2024.