簡易檢索 / 詳目顯示

研究生: 李詩閔
Shi-min Lee
論文名稱: 以微量實驗裝置的教學活動探討學生對酸鹼概念的學習情況
Investigation Students’ Learning Outcomes of the Concepts of Acids and Bases by Using Microscale Experimental Apparatus
指導教授: 黃寶鈿
Hwang, Bao-Tyan
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 錯誤概念日常生活酸鹼概念酸鹼性強度概念酸鹼溶液導電性概念比例推理能力微量實驗裝置
英文關鍵詞: Misconception, Daily life conceptions of acid/base, Strength of acid/base, Conductive properties of acid/base, Proportional reasoning ability, Microscale experimental apparatus
論文種類: 學術論文
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酸及鹼的概念雖然是一種化學專門的術語,但與人類日常生活卻有密切的關係,例如:『中和』、『pH值』等已成為現代人相當熟悉的名詞。本研究以自行設計的酸鹼概念診斷工具探究學生對酸鹼概念的了解情況,藉此找出學生的酸鹼錯誤概念。此外,並設計酸鹼概念的微量實驗裝置,希望藉由教學活動促進學生對酸鹼概念的轉變。研究對象主要包括國中一至三年級學生,共計698人。
    本研究所採用的工具包括三個部份:(1)「酸鹼概念前測及教學活動工具」,內容涵蓋有酸鹼性強度概念與酸鹼溶液導電性概念等兩大主要概念。(2)「酸鹼概念後測工具」,內容包括有日常生活酸鹼概念、酸鹼性強度概念與酸鹼溶液導電性概念等三大主要概念,以此測驗結果探討教學之成效。(3)「比例推理能力測驗工具」,主要在於評定學生基本比例推理能力的認知發展層次,以比較學生的比例推理能力與其酸鹼概念的關係。
    主要研究發現如下:
    一、學生對物質酸鹼性之推理模式大致可分為以下十三個類型:「感官知
    覺」、「中和作用」、「指示劑」、「離子觀念」、「腐蝕性」、
    「反應產物」、「導電性」、「清潔作用」、「美容作用」、「脫水
    性」、「外觀」、「稀釋」、「其他」等。
    二、對於「酸鹼性強度」之判斷,多數學生以「濃度」為考量的依據,少
    數會結合「解離度」概念,這是許多學生錯誤概念產生的主因。此
    外,經由統計分析得知,就教學前的前測結果而言,學生在「酸鹼性
    強度概念」的瞭解,在年級與性別的交互作用皆未達統計上的顯著水
    準,但在年級間則有達到統計上顯著差異(p<.001),顯示在此概念的
    理解,學生有隨年級的增加而成長的趨勢,而男女生並無顯著差異。
    三、對於酸鹼物質水溶液的導電性,一般學生所持的想法,大致有以下八
    點概念特徵:「外觀」、「離子觀點」、「能源大小」、「物質之酸
    鹼性」、「濃度」、「屬性」、「生活經驗」、「狀態」等。另外,
    學生在「酸鹼溶液導電性概念」的理解,在年級與性別的交互作用皆
    未達統計上的顯著水準,但在年級間仍達到統計上的顯著差異
    (p<.001)顯示學生在此概念的理解亦有隨年級成長的趨勢。
    四、針對教學成效而言,不管是實驗組與控制組間的比較,或者是實驗組
    本身在教學前後的比較,其平均值皆達到統計上的顯著差異(p<.001)
    ,由此,我們可以確定本研究利用微量實驗裝置的教學活動有助於學
    生在酸鹼概念上的成長。
    五、由「酸鹼性強度概念」與「酸鹼溶液導電性概念」的相關分析發現,
    不管是實驗組或控制組,學生在此二項酸鹼概念上的相關性,皆達到
    統計上的顯著水準(p<.01),可見這兩種概念在酸鹼概念的學習中息
    息相關。
    六、從比例推理能力與酸鹼相關概念之各子概念間的χ2檢驗發現,多數
    酸鹼概念與比例推理的相關有達到統計上的顯著水準(p<.01),因
    此,可以推論學生在酸鹼概念的成長,與其本身所具備的比例推理能
    力有相當程度的關聯性。
    關鍵詞:錯誤概念、日常生活酸鹼概念、酸鹼性強度概念、酸鹼溶液導電
    性概念、比例推理能力、微量實驗裝置

    The concepts of acids and bases are terminologies in chemistry. They are related to daily life of human, the terms such as“Neutralization”,“pH value”etc. are familiar to people. The purposes of this study are to probe the understanding of the concepts acids and bases of students with a designed diagnosis instrument, and to find out students’ misconceptions. Then, we hope students had better conceptual change through teaching activities. The subjects were from grade 7 to 9. Totally 698 students took this activities.
    The instruments used in this research consisted of three parts:(1)“The Acid-Base Teaching Activities with Pretest”. In this activities, it consisted of two main topics:strength of acid/base and conductive properties of acid/base. (2)“The Acid-Base Posttest”consisted of three main topics:daily life conceptions of acid/base, strength of acid/base and conductive properties of acid/base. (3)“The Proportional Reasoning Abilities Test”:The purposes of this test is to examine the relation between student’s understanding of the concepts acids and bases and their cognitive development in proportional reasoning level .
    The main findings of the study were:
    1.The main thirteen categories of students’ reasoning model
    on acid-base materials were:“Sensory Organs ”,
    “Neutralization”,“Indicator”,“Ion Concepts”,
    “Corrosiveness”,“The Product of Reaction”,
    “Conductivity”,“The Effect of Cleaning”,“Cosmetology”,
    “Dehydration”,“Appearance”,“Dilution”,“Others”.
    2.For the judgement of“Strength of Acid/Base”, most students
    considered more concepts of “Concentration”than that of“
    Degree of Dissociation ”or combined both of these two ideas,
    and it was the major cause of misconceptions . Besides, there
    was a significant difference statistically (p<.001) among
    students’ grades in the understanding of “Strength of
    Acid/Base”. It revealed that the understanding of “Strength
    of Acid/Base”was developed with students’ grade growth.
    3.For the existence of conductive properties of acid-base
    materials, the main eight categories were as follows:
    “Appearance”,“Ion Concepts”,“Energy of Battery”,
    “Acidity or Basicity”,“Concentration”,“Property”,“Daily
    Experience”,“State”. There was also a significant
    difference statistically (p<.001) among students’ grades in
    the understanding of“Conductive Properties of Acid/Base”.
    It also indicated that there was an improvement of
    “Conductive properties of acid/base”as students’ grade
    growth.
    4.In according to teaching effects, there were significant
    statistically (p<.001) between the experimental group and the
    control group or between pretest and posttest in the
    experimental group. For this reason, we can confirm that
    these teaching activities could promote the acquisition of
    the concepts acids and bases.
    5.The correlation were significant statistically (p<.o1)between
    “Strength of Acid/Base”and“Conductive Properties of
    Acid/Base”from the test performance of the experimental
    group or the control group. It is evident that the two
    concepts were closely related with each other in studying the
    concepts acids and bases.
    6.From the χ2 test between the proportional reasoning test and
    each sub-concept of the concepts acids and bases, we found
    that most were significant statistically in correlation
    coefficient(p<.01). Therefore, we can predict that students’
    maturation of the concepts acids and bases is related to
    their proportional reasoning ability.
    Keywords:misconception, daily life conceptions of acid/base,
    strength of acid/base, conductive properties of acid/base,
    proportional reasoning ability, microscale experimental
    apparatus

    中文摘要………………………………………………………………………VI 英文摘要……………………………………………………………………VIII 第一章 緒論 第一節 研究動機………………………………………………………1 第二節 研究目的………………………………………………………3 第二章 理論基礎與文獻探討 第一節 皮亞傑之認知發展理論………………………………………4 第二節 概念與學習……………………………………………………11 第三節 酸鹼概念的相關研……………………………………………15 第四節 國中、小學生之理化、自然課程教材分析…………………20 第五節 認知衝突教學與概念改變之相關研究的探討………………23 第三章 研究方法與過程 第一節 研究對象………………………………………………………27 第二節 研究工具………………………………………………………29 第三節 研究方法………………………………………………………34 第四節 研究步驟………………………………………………………36 第五節 酸鹼概念的教學流程…………………………………………39 第六節 資料蒐集與分析方法…………………………………………50 第四章 結果與討論 第一節 學生酸鹼相關概念的認知模式………………………………53 第二節 各年級學生在酸鹼相關概念的認知模式比較………………75 第三節 示範實驗教學活動對學生在酸鹼相關概念發展的學習成效83 第四節 學生酸鹼概念的發展與比例推理能力的關係………………93 第五章 結論與建議 第一節 結論……………………………………………………………94 第二節 建議……………………………………………………………98 參考文獻 中文部分………………………………………………………………100 英文部分………………………………………………………………102 附錄 附錄一 酸鹼概念前測及教學活動工具舉例 (A&B-3T)……………107 附錄二 酸鹼概念後測工具舉例 (A&B-4).…………………………110

    中文部分:
    黃寶鈿(民76):溫度與熱量概念的混淆與辨識。行政院國科會認知與學習
    研討會專集(十四), 67-94。
    魏明通(民67):國民教育科學資料叢書(34):酸、鹼和鹽。台北市:幼獅
    文化事業公司。
    黃寶鈿(民83):以示範實驗法探究學生的比例推理能力。中國測驗學會年
    刊, 41, 207-220。
    歐陽鍾仁(民73):皮亞傑的認知論與科學教育。台北市:幼獅文化事業公
    司。
    賴玉春(民73):學前兒童質量保留概念訓練效果之研究。台東師專學報,
    12, 1-73。
    張春興(民83):教育心理學:三化取向的理論與實踐。台北市:東華書局。
    張春興(民77):知之歷程與教之歷程:認知心理學的發展及其在教育上的
    應用。台灣師大教心系教育心理學報, 21, 17-38。
    黃寶鈿(民85):以另類評量工具探討學生的熱量相關概念。第三屆兩岸心
    理與教育測驗學術研討會會議手冊。台北市,國立台灣師範大學教
    育心理與輔導學系。
    鄭湧涇(民71):皮亞傑認知發展與生物科學習的關係。科學教育月刊抽印
    本, 6, 21-25。
    黃寶鈿、黃湘武(民74):學生莫耳概念發展的研究:不同物態的莫耳概
    念。中華民國七十四年度科學教育學術研討會論文彙編。
    黃台珠(民74):概念的研究及其意義。科學教育月刊抽印本, 12, 165-
    177。
    林清山譯(民87):教育心理學:認知取向。台北市:遠流出版社。
    王克先(民78):學習心理學。台北市:桂冠圖書公司。
    黃湘武、黃寶鈿(民76):學生推理能力與概念發展之研究。認知與學習研
    討會專集(第一次)。行政院國家科學委員會, 19-51。
    黃萬居(民83):國小高年級學生的認知階段與酸鹼概念之研究。台北市立
    師範學院學報, 25, 1-35。
    洪志明、施朱娟(民86):國中酸鹼概念精通學習之研究。中華民國第十三
    屆科學教育學術研討會會議手冊及短篇論文彙編。
    宋志雄(民81):探究國三學生酸與鹼的迷思概念並應用以發展教學診斷工
    具。國立彰化師範大學科教所碩士論文。
    王澄霞、楊永華(民73):中小學化學領域中「酸與鹼」概念的深廣度與其
    化學實驗之連貫性與實驗適用性之研究。國立台灣師範大學學報,
    29, 611-630。
    陳漢瑛(民82):護專學生酸與鹼錯誤概念之研究:概念構圖法之應用。行
    政院國家科學委員會,第八屆全國技術及職業教育研討會論文集。
    國立編譯館(民87、88):國民中學「理化」課本第一~三冊。台北市:台
    灣書店。
    國立編譯館(民87、88):國民中學「理化教師手冊」第一~三冊。台北
    市:台灣書店。
    國立編譯館(民87):國民小學「自然」課本第十冊。台北市:台灣書店。
    國立編譯館(民87):國民小學「自然科教師手冊」第十冊。台北市:台灣
    書店。
    師大科教中心(民87):國民中學科學課程教材改進研究計畫:理化科教育
    指標研究。
    師大科教中心(民87):國中數學及自然科學生活化實驗設計學習模組的研
    究開發與推廣計畫:化學科。
    師大科教中心(民88):國民中學教育資料叢書:理化科評量手冊。
    師大科教中心(民89):國中數學及自然科學多元評量研究計畫:化學科。
    陳姍姍(民82):我國國三學生酸鹼概念之研究。國立台灣師範大學化學研
    究所碩士論文。
    蕭次融(民86):紫色高麗菜汁的電解。科學教育月刊, 39, 45-47。
    黃寶鈿、李詩閔(民90):簡易電解實驗裝置的應用與改良。科學教育月刊
    (出版中)。
    劉元生(民83):實驗教學對於國中學生溶液概念改變的影響。國立台灣師
    範大學化學研究所碩士論文。
    王文科(民87):教育研究法。台北市:五南圖書出版公司。
    王文科(民78):認知發展理論與教育。台北市:五南圖書出版公司。
    萬其超(民69):電化學。台北市:台灣商務印書館有限公司。
    英文部分:
    Bruner, J.R., Goodnow, J.J., & Austin, G.A.(1956). A study of
    thinking, New York:Wiley.
    Bower, G.H., & Trabasso, T.R.(1963). Reversals prior to
    solution in concept identification. Journal of
    Experimental Psychology, 409-418.
    Bonder, G. M. (1986). Constructivism:a theory of knowledge.
    Journal of Chemical Education, 63(10), 873-878.
    Barman, C. R., & Allard, D. W.(1993, May). The learning cycle
    and college science teacing. Papers presented at the
    Annual International Conference of the National Institute
    for Staff and Organizational Development on Teaching
    Excellence and Congerence of Aministrators, Austin.
    Beeth, M. E. (1998). Teaching Science in Fifth Grade:
    Instructional Goals That Support Conceptual Change.
    Journal of Research in Science Teaching, 35(10), 1091-
    1101.
    Brooks, J. G. (1990). Teachers and students:constructivists
    forging new connections. Educational Leadership, 47(5),
    68-71.
    BouJaoude, S. B. (1992). The Relationship between Students’
    Learning Strategies and the Change in their
    Misunderstandings During a High School Chemistry Course.
    Journal of Research in Science Teaching, 29(7), 687-699.
    Case, F. M., & Fraser, D. M. (1999). An investigation into
    chemical engineering students’ understanding of mole and
    the use of concrete activities to promote conceptual
    change. International Journal of Science Education, 21
    (12), 1237-1249.
    Cros, D., Maurice, M., Amouroux, R., Chastrette, M., Leber, J.,
    & Fayol, M. (1986). Conceptions of first-year university
    students of the constituents of matter and the notions of
    acids and bases. European Journal of Science Education, 8
    (3), 305-313.
    Cros, D., Chastrette, M., & Fayol, M. (1988). Conceptions of
    second-year university students of some fundamental
    notions in chemistry. International Journal of Science
    Education, 10(3), 331-336.
    Cosgrove, M., & Osborne, R. (1985). In R. Osborne., & P.
    Freberg. Learning in science:the implications of
    children’s science. Auckland: Heinemann, 101-123.
    Curcio, F., Levine, D. & Robbins, O. (1972). Compensatin and
    susceptibility to conservation traning. Developmental
    Psyclology, 7(3), 259-265.
    Driver, R., Asoko. H., Leach. J., Mortimer, E. & Scott, P.
    (1994). Constructing scientific knowledge in the
    classroom. Educational Researcher, 23(7), 5-12.
    Duschl, R. A., & Gitomer, D. H. (1991). Epistemological
    prespectivies on conceptual change: implications for
    educational practice. Journal of Research in Science
    Teaching, 28(9), 839-858.
    Driver , R., & Oldham, V. (1986). A constructivist approach to
    curriculum development in science. Studies in Science
    Education, 13, 105-122.
    Gagne, E. D. (1993). The cognitive Psychology of school
    learning (2nd ed.). New York:Harper Collins College
    Publisher.
    Hashweh, M. (1988). Descriptive studies of students’
    conceptions in science. Journal of Research in Science
    Teaching, 25(2), 121-134.
    Haworth, D. T., Bartelt, M. R., & Kenney, M. J. (1999).
    Solution conductivity apparatus. Journal of Chemical
    Education, 76(5), 625-627.
    Huddle, P. A., White, M..D., & Rogers, F.(2000). Using a
    teaching model to correct known misconceptions in
    electrochemistry. Journal of Chemical Education, 77(1),
    104-110.
    Ihde, A. J. (1970). The development of modern chemistry(Dover
    Publication, New York),407.
    Inhelder, B. (Eds.) (1974). Learning and the development of
    cognition. Lodon:Routledge & Kegan Paul Ltd.
    Johnson, J. K., & Howe, A. C. (1978). The use of cognitive
    conflict to promote coservation acquisition. Journal of
    Research in Science Teaching, 15(4), 239-147.
    Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theory
    of instruction:using the learning cycle to teach science
    concepts and thinking skills. Narst Monograph, Number one.
    Marek, E. A., & Methven, S. B. (1991). Effects of the learning
    cycle upon student and classroom teacher performance.
    Journal of Research in Science Teaching,28(1), 41-53.
    Musheno1, B.V., & Lawson2, A. E. (1999).Effects of Learning
    Cycle and Traditional Text on Comprehension of Science
    Concepts by Students at Differing Reasoning Levels.
    Journal of Research in Science Teaching, 36(1), 23-37.
    Mischel, T. (1971). Piaget:Cognitive cognitive conflict and
    the motivation of though. In T. Mischel (Ed.), Cognitive
    development and epistemology (pp.311-335). New York:
    Academic Press.
    Marek, E. A., Askey, D. M., & Abraham, M. R. (2000). Student
    absences during learning cycle phases:a technological
    alternative for make-up work in laboratory based high
    school chemistry. International Journal of Science
    Education, 22(10), 1055-1068.
    Moon, T. R., & Callahan, C. M. (2001). Classroon performance
    assessment:what should it look like in a standards-based
    classroom. NASSP Bulletin, 85(622), 48-58.
    Nussbaum, J., & Novick, S. (1981). Creating cognitive
    dissonance between student’s preconception to encourage
    individual cognitive accommodation and a group
    cooperative construction of a scientific model. Paper
    presented at the American Educational Research
    Association Annual Convention, Los Angles.
    Novak, J ., & Gowin, D. B. (1984). Learning how to learn.
    Cambridge:Cambridge University Press.
    Nakhleh, M. B., & Krajcik, J. S. (1994). Influence of levels of
    information as presented by different technologies on
    students’ understanding of acid, base, and pH concepts.
    Journal of Research in Science Teaching, 31(10), 1077-
    1096.
    Nussbaum, J., & Novick, S. (1981b). Brain storming in the
    classroom to invent a model:a case study. School Science
    Review, 62(221), 771-778.
    Nussbaum, J., & Novick, S. (1982). Alternative frameworks,
    conceptual conflict and accommodation:toward a
    principled teaching stragety. Instructional Science, 11,
    183-200.
    Odom, A. L., & Barrow, L. H. (1995). Development and
    application of a two-tier diagnostic test measuring
    college biology students’ understanding of diffusion and
    osmosis after a course of instruction. Journal of
    Research in Science Teaching, 32(1), 45-61.
    Piaget, J., & Inhelder, B. (Eds.). (1969). The Psyclology of
    the child, New York:Basic Books.
    Pulaski, M. A. S. (1980). Understanding piaget: an introduction
    to children’s cognitive development. New York:Harper &
    Row.
    Posner, J., Strike, K., Hewson, P. Gertzog, W. (1982).
    Accommodation of a scientific conception:Toward a theory
    of conceptual change. Science Education, 66(2),211-227.
    Renner, J. W. (1976). Formal operational thought and its
    indentifcation. In J. W. Renner, D. G, Stsfford, A. E.
    Lawson, J. W. Mckinnon, F. E. Friot, & D. H. Kellogg
    (Eds), Research ,Teaching and Learning with the Piaget
    Model. Norman:University of Oklahoma.
    Rayner-Canham, G. W. (1994). Concepts of acides and bases:
    laying the foundations of modern chemical thought.
    Journal of College Science Teaching, 23(4), 246-247.
    Ross, B., & Munby, H. (1991). Concept mapping and
    misconceptions:a study of high-school students,
    understandings of acids and bases. International Journal
    of Science Education, 13(1), 11-23.
    Renner, J. W. (1998). The necessity of each phase of the
    learning cycle in high school physics. Journal of
    Research in Science Teaching, 25(1), 39-58.
    Rowell, J. A., & Dawson, C. J. (1981). Volume, conservation:a
    class based solomon four group study o conflict. Journal
    of Research in Science Teaching , 18(6), 533-546.
    Singer, D. G., & Revenson, T. A. (1978). A Piaget Primer:how a
    child thinks. New York: International Universities Press.
    Shayer, M., & Adey, P. (1987). Towards a science of science
    teaching. London:Heinemann Educational Books.
    Schmidt, H. F. (1995). Applying the concept of conjugation to
    the Bronsted theory of acid-base reaction by senior high
    school students from Germany. International Journal of
    Science Education, 17(6), 733-741.
    Schlenke, R. M., Cullen, D., & Schlenker, K. R. (1999). Using
    acid-base reagent problem as a high school science
    research activity. Science Activities, 35(4), 19-23.
    Schmidt, H. J. (1994). Stoichmetric problem solving in high
    school chemistry. International Journal of Science
    Education, 16(2), 191-200.
    Toplis, R. (1998). Ideas about acids and alkalis. School
    Science Review, 80(291), 67-70.
    Treagust, D. F. (1989). Development and use of diagnostic test
    to evaluate students’ misconceptions in science.
    International Journal of Science Education , 10(2)
    ,159-169.
    Treagust, D. F., & Mann, M. (2000). An instrument to diagnose
    students’ conceptions of breathing, gas exchange and
    respiration. Paper presented at the Annual Meeting of the
    NARST, New Orleans.
    Taconis, R., Ferguson-Hessler, M. G. M.,& Broekkamp, H. (2001).
    Teaching science problem solving:an overview of
    experimental work. Journal of Research in Science
    Teaching, 38(4), 442-468.
    von Glasersfeld, E (1984). An introduction to radical
    constructivism. In P. Walzlawick (Ed.). The Invented
    Reality (pp17~40). New York:Noron.
    Vidypati, T. J., & Seetharamappa, J. (1995). Higher secondary
    school students’ concepts of acids and bases. School
    Science Review, 77(278), 82-84.
    Vancleave, J. (1998). Is it acids or bases?these colorful
    tests tell all!Instructor, March, 97-98.
    Weaver, G. C. (1998). Strategies in K-12 science instruction to
    promote conceptual change. Science Education, 82, 455-472.

    無法下載圖示 本全文未授權公開
    QR CODE