簡易檢索 / 詳目顯示

研究生: 張文騰
Wen-Teng Chang
論文名稱: 台灣族群帕金森氏症Leucine-Rich Repeat Kinase 2 (LRRK2) 基因變異的分子功能研究
Molecular Characterization of LRRK2 Variations in Taiwanese Parkinson’s Disease
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 帕金森氏症神經退化性疾病震顫素
英文關鍵詞: Parkinson's disease, neurodegenerative disease, dardarin
論文種類: 學術論文
相關次數: 點閱:849下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PARK8基因座的LRRK2 (全名leucine-rich repeat kinase 2)基因,其突變會導致體染色體顯性的帕金森氏症。LRRK2蛋白具有多個功能區域,於神經系統、大部份器官及淋巴細胞等都有表現。新穎的R767H、S885N變異及已報導過的R1441H變異,是本實驗室在臺灣帕金森氏症患者發現的突變點,R1628P和G2385R兩變異則是華人帕金森氏症的危險因子。本論文首先建構EGFP標記的野生型及R1441H、R1628P、G2385R變異的LRRK2質體(含S1647T、M2397T多型性),送到HEK-293T細胞中表現,經共軛焦顯微鏡觀察、西方轉漬分析研究,顯示上述變異對LRRK2蛋白在細胞內的位置及合成皆無受到影響。其次選殖α-synuclein cDNA,與R767H、S885N、R1441H、G2019S (白種人常見,作為對照)突變的LRRK2質體共轉染入SK-N-SH細胞,經細胞免疫螢光染色及共軛焦顯微鏡觀察,顯示野生型LRRK2廣泛分佈在細胞質並與α-synuclein有些微連繫。突變的R767H、S885N、R1441H、G2019S亦主要分佈在細胞質,R1441H和G2019S的LRRK2容易形成不含α-synuclein且鄰近細胞核的聚集。進一步的表現上述LRRK2質體於HEK-293T細胞二至六天後,螢光顯微鏡觀察及定量統計結果顯示R1441H和G2019S較野生型的LRRK2顯著地容易誘導更多的包涵體。最後,選殖V5標記的ARHGEF7 cDNA,並建構不含S1647T、M2397T多型性的Myc-His標記的LRRK2質體,共轉染入HEK-293T細胞,進行免疫共沉澱與GTP結合能力試驗的分析,結果發現S885N、R1441H、G2019S等突變影響LRRK2蛋白與ARHGEF7的交互作用。

    Mutations in PARK8 associated leucine-rich repeat kinase 2 (LRRK2) have been shown to be the leading cause of autosomal dominant Parkinson's disease (PD). The multidomain LRRK2 is expressed ubiquitously, including the central nervous system and various organs. Previously novel R767H, S885N and reported R1441H were found in Taiwanese PD patients, in addition to R1628P and G2385R risk factors in ethnic Chinese populations. In the first part of this study, EGFP-tagged wild type, R1441H, R1628P and G2385R LRRK2 constructs (with S1647T and M2397T SNPs) were prepared for transient expression in HEK-293T cells. Western blot analysis and fuorescence microscopy examination revealed that neither localization nor processing of LRRK2 was affected by R1441H, R1628P and G2385R variations. Secondly, α-synuclein cDNA was cloned and co-transfected with the EGFP-tagged wild type or mutant (R767H, S885N, R1441H, G2019S) LRRK2 constructs in SK-N-SH cells. Confocal microscopy examination revealed that wild-type LRRK2 was widespread cytoplasmic and partially in association with α-synuclein. The distribution of R767H and S885N proteins were also mainly in cytoplasm. In contrast, both R1441H and G2019S (included as an aggregation control) LRRK2 mutants formed α-synuclein-negative perinuclear aggregates in a smaller, but still appreciable, proportion of cells, in addition to cytoplasmic distribution. Fluorescent microscopy examination and quantitation of the number of cells with LRRK2-EGFP fluorescent aggregates out of the transfected HEK-293T cell population further revealed that R1441H and G2019S both induced significant more inclusions as compared to wild-type LRRK2. Finally, V5-tagged ARHGEF7 cDNA was cloned and co-expressed with the Myc-tagged wild type or mutant (R767H, S885N, R1441H, G2019S) LRRK2 constructs in HEK-293T cells. Co-immunoprecipitation assay revealed that S885N, R1441H and G2019S reduced interaction between LRRK2 and ARHGEF7.

    目錄 I 中文摘要 VI Abstract VII 圖表目錄 VIII 壹、緒論 1 一、帕金森氏症 1 (一)臨床病徵 1 (二)神經病理學 2 (三)病因學 2 二、帕金森氏症的遺傳分析 4 三、LRRK2基因 5 (一) LRRK2的構造、表現與功能 6 (二) LRRK2基因變異與帕金森氏症 6 貳、研究目的 8 參、研究材料與方法 9 一、R1441H、R1628P、G2385R對LRRK2蛋白在細胞內的位置及合成的影響 9 (一) EGFP標記的LRRK2 cDNA質體建構 9 (二)細胞培養 10 (三)基因轉染(Transfection) 10 (四)西方轉漬法(Western blot) 11 (五)共軛焦顯微鏡觀察 12 (1)觀察LRRK2- EGFP融合蛋白於細胞中的表現…..…..….12 (2)觀察LRRK2- EGFP與粒腺體重疊情形 13 (3)觀察LRRK2- EGFP與溶小體重疊情形 13 (4)觀察LRRK2- EGFP與內質網重疊情形 13 二、R767H、S885N、R1441H、G2019S突變的LRRK2形成聚集的情形 14 (一) α-synuclein cDNA選殖 14 (二) EGFP標計的LRRK2 cDNA質體建構 14 (三)細胞培養 15 (四)基因共轉染(co-transfection) 15 (五)細胞免疫螢光染色及螢光顯微鏡觀察 16 (六)活細胞影像儀觀察 17 三、R767H、S885N、R1441H、G2019S突變的LRRK2形成二元體的情形 17 (一) Myc-His標記的LRRK2質體建構 17 (二) 基因轉染及西方轉漬分析 18 (三) LRRK2-Myc-His與LRRK2-EGFP形成二元體的分析 18 四、R767H、S885N、R1441H、G2019S等突變的LRRK2蛋白與ARHGEF7蛋白結合測試 19 (一) ARHGEF7 cDNA選殖 19 (二) LRRK2與ARHGEF7蛋白的免疫共沉澱分析 20 肆、結果 22 一、R1441H、R1628P、G2385R對LRRK2蛋白在細胞內的位置及合成的影響 22 (一) EGFP標記的LRRK2 cDNA選殖 22 (二) 西方轉漬法分析R1441H、R1628P、G2385R對LRRK2合成的影響 22 (三) LRRK2-EGFP的共軛焦螢光顯微鏡觀察 23 二、R767H、S885N、R1441H、G2019S突變的LRRK2形成聚集的情形 23 (一) α-synuclein cDNA選殖 23 (二) EGFP標記的LRRK2/G2019S cDNA質體 23 (三) α-synuclein免疫螢光染色及共軛焦螢光顯微鏡觀察 24 (四)活細胞影像儀觀察突變的LRRK2形成聚集的情形 24 三、R767H、S885N、R1441H、G2019S突變的LRRK2形成二元體的情形 24 (一) Myc-His標記的LRRK2 cDNA 25 (二) Myc-His標記的LRRK2 cDNA表現 25 (三) LRRK2-Myc-His、LRRK2-EGFP蛋白的二元化情形 26 四、R767H、S885N、R1441H、G2019S等突變的LRRK2蛋白的與ARHGEF7蛋白的結合情形 26 (一) ARHGEF7 cDNA選殖 26 (二) LRRK2與ARHGEF7蛋白間交互的作用 27 伍、討論 28 一、R1441H、R1628P、G2385R對LRRK2蛋白在細胞內的位置及合成的影響 28 二、R767H、S885N、R1441H、G2019S突變的LRRK2形成聚集的情形 29 三、R767H、S885N、R1441H、G2019S突變的LRRK2形成二元體的情形 30 四、R767H、S885N、R1441H、G2019S等突變的LRRK2蛋白與ARHGEF7蛋白的交互作用 31 陸、參考文獻 33 柒、附錄圖表 42

    許玄竺(2008)。LRRK2、GRN基因變異與台灣帕金森氏症、額顳葉型
    失智症的相關性研究。國立台灣師範大學生命科學系九十七學年
    度碩士論文。
    Alegre-Abarrategui J, Ansorge O, Esiri M, Wade-Martins R. (2008) LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease. Neuropathol Appl Neurobiol 34: 272-283.
    An XK, Peng R, Li T, Burgunder JM, Wu Y, Chen WJ, Zhang JH, Wang YC, Xu YM, Gou YR, Yuan GG, Zhang ZJ. (2008) LRRK2 Gly2385Arg variant is a risk factor of Parkinson's disease among Han-Chinese from mainland China. Eur J Neurol 15: 301-305.
    Belin AC, Westerlund M. (2008) Parkinson's disease: a genetic perspective. FEBS J 275: 1377-1383.
    Berg D, Schweitzer K, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brussel T, Schulte C, Maass S, Nagele T. (2005) Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease. Brain 128: 3000-3011.
    Bertram CP, Lemay M, Stelmach GE. (2005) The effect of Parkinson's disease on the control of multi-segmental coordination. Brain Cogn 57: 16-20.
    Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G. (2003) DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24: 159-160.
    Chen RC, Chang SF, Su CL, Chen TH, Yen MF, Wu HM, Chen ZY, Liou HH. (2001) Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology 57: 1679-1686.
    Choi JM, Woo MS, Ma HI, Kang SY, Sung YH, Yong SW, Chung SJ, Kim JS, Shin HW, Lyoo CH, Lee PH, Baik JS, Kim SJ, Park MY, Sohn YH, Kim JH, Kim JW, Lee MS, Lee MC, Kim DH, Kim YJ. (2008) Analysis of PARK genes in a Korean cohort of early-onset Parkinson disease. Neurogenetics 9: 263-269.
    Conley SC, Kirchner JT. (1999) Parkinson's disease--the shaking palsy. Underlying factors, diagnostic considerations, and clinical course. Postgrad Med 106: 39-42, 45-36, 49-50 passim.
    Dauer W, Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889-909.
    Deng J, Lewis PA, Greggio E, Sluch E, Beilina A, Cookson MR. (2008) Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci USA 105: 1499-1504.
    Di Fonzo A, Tassorelli C, De Mari M, Chien HF, Ferreira J, Rohé CF, Riboldazzi G, Antonini A, Albani G, Mauro A, Marconi R, Abbruzzese G, Lopiano L, Fincati E, Guidi M, Marini P, Stocchi F, Onofrj M, Toni V, Tinazzi M, Fabbrini G, Lamberti P, Vanacore N, Meco G, Leitner P, Uitti RJ, Wszolek ZK, Gasser T, Simons EJ, Breedveld GJ, Goldwurm S, Pezzoli G, Sampaio C, Barbosa E, Martignoni E, Oostra BA, Bonifati V; Italian Parkinson's Genetics Network. (2006) Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson's disease. Eur J Hum Genet 14: 322-331.
    Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, Fabbrini G, Marconi R, Fincati E, Abbruzzese G, Marini P, Squitieri F, Horstink MW, Montagna P, Libera AD, Stocchi F, Goldwurm S, Ferreira JJ, Meco G, Martignoni E, Lopiano L, Jardim LB, Oostra BA, Barbosa ER; Italian Parkinson Genetics Network, Bonifati V. (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68: 1557-1562.
    Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, Szczerbinska A, Zhao T, Dubbel-Hulsman LO, Wouters CH, de Graaff E, Oyen WJ, Simons EJ, Breedveld GJ, Oostra BA, Horstink MW, Bonifati V. (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72: 240-245.
    Elbaz A, Grigoletto F, Baldereschi M, Breteler MM, Manubens-Bertran JM, Lopez-Pousa S, Dartigues JF, Alperovitch A, Tzourio C, Rocca WA. (1999) Familial aggregation of Parkinson's disease: a population-based case-control study in Europe. EUROPARKINSON Study Group. Neurology 52: 1876-1882.
    Farrer MJ. (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7: 306-318.
    Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 51: 296-301.
    Funayama M, Li Y, Tomiyama H, Yoshino H, Imamichi Y, Yamamoto M, Murata M, Toda T, Mizuno Y, Hattori N. (2007) Leucine-rich repeat kinase 2 G2385R variant is a risk factor for Parkinson disease in Asian population. Neuroreport 18: 273-275.
    Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, Van Deerlin VM. (2006) Biochemical and pathological characterization of Lrrk2. Ann Neurol 59: 315-322.
    Giasson BI, Van Deerlin VM. (2008) Mutations in LRRK2 as a cause of Parkinson's disease. Neurosignals 16: 99-105.
    Gibb WR, Lees AJ. (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry 54: 388-396.
    Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O'Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M. (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 15: 223-232.
    Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug MP, Beilina A, Blackinton J, Thomas KJ, Ahmad R, Miller DW, Kesavapany S, Singleton A, Lees A, Harvey RJ, Harvey K, Cookson MR. (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23: 329-341.
    Haebig K, Gloeckner CJ, Miralles MG, Gillardon F, Schulte C, Riess O, Ueffing M, Biskup S, Bonin M. (2010) ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2. PLoS One 5: e13762.
    Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C. (2009) The genetics of Parkinson's syndromes: a critical review. Curr Opin Genet Dev 19: 254-265.
    Hatano Y, Sato K, Elibol B, Yoshino H, Yamamura Y, Bonifati V, Shinotoh H, Asahina M, Kobayashi S, Ng AR. (2004) PARK6-linked autosomal recessive early-onset parkinsonism in Asian populations. Neurology 63: 1482-1485.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608.
    Langston JW. (1987) MPTP: insights into the etiology of Parkinson's disease. Eur Neurol 26 Suppl 1: 2-10.
    Lazzarini AM, Myers RH, Zimmerman TR Jr, Mark MH, Golbe LI, Sage JI, Johnson WG, Duvoisin RC. (1994) A clinical genetic study of Parkinson's disease: evidence for dominant transmission. Neurology 44: 499-506.
    Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. (1998) The ubiquitin pathway in Parkinson's disease. Nature 395: 451-452.
    Lesage S, Belarbi S, Troiano A, Condroyer C, Hecham N, Pollak P, Lohman E, Benhassine T, Ysmail-Dahlouk F, Dürr A, Tazir M, Brice A; French Parkinson's Disease Genetics Study Group. (2008) Is the common LRRK2 G2019S mutation related to dyskinesias in North African Parkinson disease? Neurology 71: 1550-1552.
    Lev N, Melamed E. (2001) Heredity in Parkinson's disease: new findings. Isr Med Assoc J 3: 435-438.
    Li C, Ting Z, Qin X, Ying W, Li B, Guo Qiang L, Jian Fang M, Jing Z, Jian Qing D, Sheng Di C. (2007) The prevalence of LRRK2 Gly2385Arg variant in Chinese Han population with Parkinson's disease. Mov Disord 22: 2439-2443.
    Li X, Wang QJ, Pan N, Lee S, Zhao Y, Chait BT, Yue Z. (2011) Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson's disease. PLoS One 6: e17153.
    Lin CH, Tzen KY, Yu CY, Tai CH, Farrer MJ, Wu RM. (2008) LRRK2 mutation in familial Parkinson's disease in a Taiwanese population: clinical, PET, and functional studies. J Biomed Sci 15: 661-667.
    Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC. (1997) Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology 48: 1583-1588.
    Marjama-Lyons JM, Koller WC. (2001) Parkinson's disease. Update in diagnosis and symptom management. Geriatrics 56: 24-25, 29-30, 33-35.
    Mata IF, Kachergus JM, Taylor JP, Lincoln S, Aasly J, Lynch T, Hulihan MM, Cobb SA, Wu RM, Lu CS, Lahoz C, Wszolek ZK, Farrer MJ. (2005) Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 6: 171-177.
    Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. (2006) LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci 29: 286-293.
    Montgomery EB Jr. (1995) Heavy metals and the etiology of Parkinson's disease and other movement disorders. Toxicology 97: 3-9.
    Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Martí-Massó JF, Pérez-Tur J, Wood NW, Singleton AB. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44: 595-600.
    Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, Hardy J, Houlden H, Singleton A, Schneider SA. (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65: 19-23.
    Payami H, Larsen K, Bernard S, Nutt J. (1994) Increased risk of Parkinson's disease in parents and siblings of patients. Ann Neurol 36: 659-661.
    Perry G, Zhu X, Babar AK, Siedlak SL, Yang Q, Ito G, Iwatsubo T, Smith MA, Chen SG. (2008) Leucine-rich repeat kinase 2 colocalizes with alpha-synuclein in Parkinson's disease, but not tau-containing deposits in tauopathies. Neurodegener Dis 5: 222-224.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276: 2045-2047.
    Qing H, Zhang Y, Deng Y, McGeer EG, McGeer PL. (2009) Lrrk2 interaction with alpha-synuclein in diffuse Lewy body disease. Biochem Biophys Res Commun 390: 1229-1234.
    Sambrook J, Fritsch EF, Maniatis T. (1989) Molecular Cloning: a Laboratory Manual. 2nd ed. New York: Cold Spring Harbor.
    Schapira AH. (2006) Etiology of Parkinson's disease. Neurology 66: S10-23.
    Sen S, Webber PJ, West AB. (2009) Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J Biol Chem 284: 36346-36356.
    Snyder SH, D'Amato RJ. (1986) MPTP: a neurotoxin relevant to the pathophysiology of Parkinson's disease. The 1985 George C. Cotzias lecture. Neurology 36: 250-258.
    Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Kruger R. (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet 14: 2099-2111.
    Tan EK, Shen H, Tan LC, Farrer M, Yew K, Chua E, Jamora RD, Puvan K, Puong KY, Zhao Y, Pavanni R, Wong MC, Yih Y, Skipper L, Liu JJ. (2005) The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson's disease patients. Neurosci Lett 384: 327-329.
    Tan EK, Zhao Y, Skipper L, Tan MG, Di Fonzo A, Sun L, Fook-Chong S, Tang S, Chua E, Yuen Y, Tan L, Pavanni R, Wong MC, Kolatkar P, Lu CS, Bonifati V, Liu JJ. (2007) The LRRK2 Gly2385Arg variant is associated with Parkinson's disease: genetic and functional evidence. Hum Genet 120: 857-863.
    Tan EK, Tang M, Tan LC, Wu YR, Wu RM, Ross OA, Zhao Y. (2008) Lrrk2 R1628P in non-Chinese Asian races. Ann Neurol 64: 472-473.
    Taylor JP, Mata IF, Farrer MJ. (2006) LRRK2: a common pathway for parkinsonism, pathogenesis and prevention? Trends Mol Med 12: 76-82.
    Waxman EA, Covy JP, Bukh I, Li X, Dawson TM, Giasson BI. (2009) Leucine-rich repeat kinase 2 expression leads to aggresome formation that is not associated with alpha-synuclein inclusions. J Neuropathol Exp Neurol 68: 785-796.
    West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM. (2005) Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102: 16842-16847.
    Wu T, Zeng Y, Ding X, Li X, Li W, Dong H, Chen S, Zhang X, Ma G, Yao J, Deng X. (2006) A novel P755L mutation in LRRK2 gene associated with Parkinson's disease. Neuroreport 17: 1859-1862.
    Xiong Y, Coombes CE, Kilaru A, Li X, Gitler AD, Bowers WJ, Dawson VL, Dawson TM, Moore DJ. (2010) GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet 6: e1000902.
    Zhu X, Babar A, Siedlak SL, Yang Q, Ito G, Iwatsubo T, Smith MA, Perry G, Chen SG. (2006) LRRK2 in Parkinson's disease and dementia with Lewy bodies. Mol Neurodegener 1: 17.
    Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44: 601-607.

    下載圖示
    QR CODE