簡易檢索 / 詳目顯示

研究生: 趙苡捷
Chao, Yi-Chieh
論文名稱: 使用P3HT製作有機氣體感測器檢測呼氣氨濃度
Fabrication of organic gas sensor based on P3HT to detect ammonia concentration in the breath
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 聚三己基噻吩陽極氧化鋁氧化鋅氣體感測器氨氣
英文關鍵詞: P3HT, AAO, ZnO, Gas sensor, Ammonia
論文種類: 學術論文
相關次數: 點閱:82下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚三己基噻吩(Poly(3-hexylthiophene), P3HT)為具有高電洞遷移率(hole mobility)、良好穩定度、良好導電性及低加工成本而被應用在氣體感測元件。本研究利用原子層沉積(Atomic Layer Deposition, ALD)在陽極氧化鋁(Anodic Aluminum Oxide, AAO)中成長氧化鋅(Zinc Oxide, ZnO)形成陣列式氧化鋅奈米線。經旋轉塗佈法塗佈P3HT於氧化鋅奈米線上形成具有PN介面的有機半導體氣體感測器,並且改變旋轉塗佈的轉速(4000~6000 rpm),得到P3HT厚度分別約為277 nm、397 nm、462 nm的P3HT有機氣體感測器。本實驗探討使用氧化鋅奈米線與氧化鋅薄膜作為N型半導體與不同旋轉塗佈轉速製備的P3HT作為P型半導體所結合的有機氣體感測元件對於氨氣之感測能力,製作過程中會探討不同製程參數所形成的氧化鋅奈米線之表面形貌與晶體結構,其性質分析以掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM)、X光繞射分析儀(X-ray diffractometer, XRD)檢測。製作完成之氣體感測元件其性質分析以霍爾量測(Hall Effect)與氣體感測設備(Gas-sensing device)檢測元件之電性與對氨氣之反應靈敏度等性質。實驗結果顯示使用氧化鋅奈米線比氧化鋅薄膜所量測到的靈敏度高,且P3HT越厚所量測到的靈敏度越好,旋轉塗佈轉速為4000 rpm時所製備出的P3HT有機氣體感測元件其靈敏度最高,可達到36.2%。

    Poly(3-hexylthiophene)(P3HT) having a high hole mobility, good stability, good electrical conductivity and low processing costs while being application at gas-sensing element. In this study, used atomic layer deposition(ALD) to grow zinc oxide (ZnO) at anodized aluminum oxide(AAO) forming zinc oxide nanowire array. P3HT was coated by spin coating formed on zinc oxide nanowire to be a PN heterogeneous interface of the organic semiconductor gas sensor, and changing the speed of the spin coating (4000 ~ 6000 rpm), to give different thickness of P3HT which were about 277 nm, 397 nm, 462 nm. In this study, used zinc oxide films and zinc oxide nanowires as N-type semiconductor for the organic gas-sensing element with different rotational speed coating prepared P3HT as P-type semiconductor bound for the sense of ammonia measurement capability, the production process will discuss the surface morphology and crystal structure of different process parameters formed of zinc oxide nanowires, the nature of the analysis with scanning electron microscopy(SEM), X-ray diffraction(XRD). Produced element analysis by Hall Effect and Gas-sensing device to detect their electrical properties and sensitivity of the ammonia. Experimental results show that the sensitivity of using zinc oxide nanowires is better than zinc oxide film, and the thicker P3HT is more sensitivity then others, spin-coating speed of 4000 rpm made P3HT organic gas-sensing element has highest sensitivity, and it can reach 36.2%.

    摘 要 i ABSTRACT ii 誌 謝 iii 目 錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 氣體感測器 2 1.3 研究動機與目的 4 1.4 研究流程與架構 5 第二章 文獻回顧 7 2.1 氣體感測器 7 2.1.1 氣體感測器概述 7 2.1.2 氣體感測器種類 7 2.1.3 有機氣體感測器 12 2.1.4 氣體感測器比較 15 2.2 陽極氧化鋁 16 2.2.1 陽極氧化鋁生成機制 16 2.2.2 陽極氧化鋁製備參數 18 2.3 有機材料應用 20 2.3.1 有機分子半導體 20 2.3.2 有機導電聚合物 21 2.3.3 聚三己基噻吩(P3HT)概述 22 2.3.4 聚三己基噻吩(P3HT)特性 24 2.4 氧化鋅 24 2.4.1 氧化鋅概述 24 2.4.2 氧化鋅奈米線製作方法 26 2.5 PN接面 27 2.5.1 反應機制 27 2.5.2 有機PN接面 29 第三章 實驗方法 31 3.1 實驗流程 31 3.2 陽極氧化鋁奈米模板製作 33 3.2.1 實驗步驟 34 3.2.2 製備鋁薄膜 34 3.2.3 第一次陽極處理 36 3.2.4 鉻酸蝕刻 36 3.2.5 第二次陽極處理 37 3.2.6 磷酸擴孔與退火處理 37 3.3 以原子層沉積法(ALD)製備氧化鋅(ZnO)奈米線 39 3.3.1 實驗步驟 39 3.4 濕式蝕刻(Wet etching) 42 3.4.1 實驗步驟 43 3.5 旋轉塗鍍法(Spin coating) 44 3.5.1 實驗步驟 44 3.6 氣體量測 47 3.6.1 實驗步驟 48 3.7 分析儀器 49 3.7.1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 49 3.7.2 X光繞射分析(X-Ray Diffraction,XRD) 50 3.7.3 霍爾電性量測(Hall effect) 51 3.7.4 氣體感測設備(Gas-sensing device) 52 第四章 實驗結果與討論 53 4.1 陽極氧化鋁(AAO)/銦錫導電膜(ITO)基板 53 4.1.1 掃瞄式電子顯微鏡(SEM)分析 53 4.2 氧化鋅奈米線製作 56 4.2.1 原子層沉積(Atomic Layer Deposition,ALD) 56 4.2.2 HCl處理 57 4.2.1 NaOH處理 61 4.3 P3HT氣體感測元件 64 4.3.1 掃描式電子顯微鏡(SEM)分析 64 4.3.2 霍爾量測 65 4.3.3 氣體量測 67 第五章 結論 73 第六章 未來展望 75 參考文獻 76

    [1] 聞玉梅,現代醫學微生物學,上海醫科大學出版社,1999
    [2] 陳榜,“病毒性肝炎”,中國中醫臨床醫學雜誌,pp. 54-61,vol. 10,2004.
    [3] 衛生福利部,“102年國人死因統計結果”,2014
    [4] 古佳琳,“陣列式表面聲波感測器在有機氣體辨識之研究”,中原大學電子工程研究所,碩士,2007。
    [5] 劉國晏,“高真空壓鑄法製備陣列式錫鉛合金奈米線氣體感測器”,臺北科技大學機電整合研究所,碩士,2012。
    [6] C. Shimamoto, I. Hirata, and K. Katsu, “Breath and blood ammonia in liver cirrhosis,” Hepato-gastroenterology, vol. 47, pp. 443-445, 1999.
    [7] P. Hersch, “Galvanic determination of traces of oxygen in gases,” Nature, vol. 169, pp. 792-793, 1952.
    [8] P. Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis,” The Journal of Chemical Physics, vol. 21, pp. 1531-1538, 1953.
    [9] J. Weissbart and R. Ruka, “Oxygen gauge,” Review of Scientific Instruments, vol. 32, pp. 593-595, 1961.
    [10] T. Siyama and A. Kato, “A new detector for gaseous components using semiconductor thin film,” Anal. Chem, vol. 34, pp. 1502-1503, 1962.
    [11] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen− sensitive MOS field− effect transistor,” Applied Physics Letters, vol. 26, pp. 55-57, 1975.
    [12] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al., “Nanotube molecular wires as chemical sensors,” science, vol. 287, pp. 622-625, 2000.
    [13] K. Potje-Kamloth, “Semiconductor Junction Gas Sensors,” Chemical Reviews, vol. 108, pp. 367-399, 2008.
    [14] B. Luther, S. Wolter, and S. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sensors and Actuators B: Chemical, vol. 56, pp. 164-168, 1999.
    [15] J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, et al., “Hydrogen response mechanism of Pt–GaN Schottky diodes,” Applied Physics Letters, vol. 80, pp. 1222-1224, 2002.
    [16] B. Kang, F. Ren, B. Gila, C. Abernathy, and S. Pearton, “AlGaN/GaN-based metal–oxide–semiconductor diode-based hydrogen gas sensor,” Applied physics letters, vol. 84, pp. 1123-1125, 2004.
    [17] K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, and H. Hasegawa, “Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure,” Applied surface science, vol. 244, pp. 273-276, 2005.
    [18] T.-H. Tsai, J.-R. Huang, K.-W. Lin, W.-C. Hsu, H.-I. Chen, and W.-C. Liu, “Improved hydrogen sensing characteristics of a Pt/SiO 2/GaN Schottky diode,” Sensors and Actuators B: Chemical, vol. 129, pp. 292-302, 2008.
    [19] J. Yu, S. Ippolito, M. Shafiei, D. Dhawan, W. Wlodarski, and K. Kalantar-Zadeh, “Reverse biased Pt/nanostructured MoO 3/SiC Schottky diode based hydrogen gas sensors,” Applied Physics Letters, vol. 94, pp. 013504-013504-3, 2009.
    [20] C. Kim, J. Lee, Y. Lee, N. Cho, and D. Kim, “A study on a platinum–silicon carbide Schottky diode as a hydrogen gas sensor,” Sensors and Actuators B: Chemical, vol. 66, pp. 116-118, 2000.
    [21] K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/silicon nanowire Schottky barrier-based hydrogen sensors,” Sensors and Actuators B: Chemical, vol. 145, pp. 232-238, 2010.
    [22] C. Kim, J. Lee, S. Choi, I. Noh, H. Kim, N. Cho, et al., “Pd-and Pt-SiC Schottky diodes for detection of H 2 and CH 4 at high temperature,” Sensors and Actuators B: Chemical, vol. 77, pp. 455-462, 2001.
    [23] A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive Ga 2 O 3 Schottky diode sensor based on SiC,” Sensors and Actuators B: Chemical, vol. 100, pp. 94-98, 2004.
    [24] S. N. Das, J. P. Kar, J.-H. Choi, T. I. Lee, K.-J. Moon, and J.-M. Myoung, “Fabrication and characterization of ZnO single nanowire-based hydrogen sensor,” The Journal of Physical Chemistry C, vol. 114, pp. 1689-1693, 2010.
    [25] J. Herran, I. Fernandez, R. Tena-Zaera, E. Ochoteco, G. Cabanero, and H. Grande, “Schottky diodes based on electrodeposited ZnO nanorod arrays for humidity sensing at room temperature,” Sensors and Actuators B: Chemical, vol. 174, pp. 274-278, 2012.
    [26] Y. Liu, J. Yu, and P. Lai, “Investigation of WO 3/ZnO thin-film heterojunction-based Schottky diodes for H 2 gas sensing,” International Journal of Hydrogen Energy, vol. 39, pp. 10313-10319, 2014.
    [27] Y. Wong, W. Kang, J. Davidson, A. Wisitsora-At, and K. Soh, “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sensors and actuators B: chemical, vol. 93, pp. 327-332, 2003.
    [28] M. Zhu, X. Li, S. Chung, L. Zhao, X. Li, X. Zang, et al., “Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode,” Carbon, vol. 84, pp. 138-145, 2015.
    [29] 周瑞福,”氣體感測器原理與應用”,三聯技術,pp. 25-31,2010.
    [30] T. Watanabe, S. Okazaki, H. Nakagawa, K. Murata, and K. Fukuda, “A fiber-optic hydrogen gas sensor with low propagation loss,” Sensors and Actuators B: Chemical, vol. 145, pp. 781-787, 2010.
    [31] D. Dabill, S. Gentry, and P. Walsh, “A fast-response catalytic sensor for flammable gases,” Sensors and actuators, vol. 11, pp. 135-143, 1987.
    [32] C.-H. Han, D.-W. Hong, S.-D. Han, J. Gwak, and K. C. Singh, “Catalytic combustion type hydrogen gas sensor using TiO 2 and UV-LED,” Sensors and Actuators B: Chemical, vol. 125, pp. 224-228, 2007.
    [33] J. F. McAleer, P. T. Moseley, J. O. Norris, D. E. Williams, and B. C. Tofield, “Tin dioxide gas sensors. Part 2.—The role of surface additives,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 84, pp. 441-457, 1988.
    [34] L. Sun, F. Qiu, and B. Quan, “Investigation of a new catalytic combustion-type CH 4 gas sensor with low power consumption,” Sensors and Actuators B: Chemical, vol. 66, pp. 289-292, 2000.
    [35] C.-H. Han, D.-W. Hong, I.-J. Kim, J. Gwak, S.-D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sensors and Actuators B: Chemical, vol. 128, pp. 320-325, 2007.
    [36] E.-B. Lee, I.-S. Hwang, J.-H. Cha, H.-J. Lee, W.-B. Lee, J. J. Pak, et al., “Micromachined catalytic combustible hydrogen gas sensor,” Sensors and Actuators B: Chemical, vol. 153, pp. 392-397, 2011.
    [37] K. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sensors and Actuators A: Physical, vol. 82, pp. 40-61, 2000.
    [38] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.
    [39] 謝振傑,“光纖生物感測器”,物理雙月刊,pp. 704-710,vol. 28,2006.
    [40] M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold, and K. Cammann, “Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical, vol. 34, pp. 328-333, 1996.
    [41] 饒銘軒,“具中空螢光檢測結構之光纖氣體感測器”,逢甲大學自動控制工程學系,碩士,2014。
    [42] N. Agbor, J. Cresswell, M. Petty, and A. Monkman, “An optical gas sensor based on polyaniline Langmuir-Blodgett films,” Sensors and Actuators B: Chemical, vol. 41, pp. 137-141, 1997.
    [43] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, “Interactions of tin oxide surface with O 2, H 2 O and H 2,” Surface Science, vol. 86, pp. 335-344, 1979.
    [44] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, “Sensing characteristics of NiO thin films as NO 2 gas sensor,” Thin Solid Films, vol. 418, pp. 9-15, 2002.
    [45] H. Nanto, T. Minami, and S. Takata, “Zinc‐oxide thin‐film ammonia gas sensors with high sensitivity and excellent selectivity,” Journal of Applied Physics, vol. 60, pp. 482-484, 1986.
    [46] G. Sberveglieri, “Gas sensors,” ed: Kluwer, Dordrecht, 1992.
    [47] H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors, vol. 7, pp. 267-307, 2007.
    [48] N. Bhat, A. Gadre, and V. Bambole, “Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films,” Journal of applied polymer science, vol. 80, pp. 2511-2517, 2001.
    [49] H. Yoon, M. Chang, and J. Jang, “Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: effects of transducer size and transduction mechanism,” The Journal of Physical Chemistry B, vol. 110, pp. 14074-14077, 2006.
    [50] G. Heiland and D. Kohl, “Problems and possibilities of oxidic and organic semiconductor gas sensors,” Sensors and Actuators, vol. 8, pp. 227-233, 1985.
    [51] J. J. Miasik, A. Hooper, and B. C. Tofield, “Conducting polymer gas sensors,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 82, pp. 1117-1126, 1986.
    [52] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, vol. 49, pp. 1210-1212, 1986.
    [53] A. J. Lovinger and L. J. Rothberg, “Electrically active organic and polymeric materials for thin-film-transistor technologies,” Journal of materials research, vol. 11, pp. 1581-1592, 1996.
    [54] L. Torsi, A. Dodabalapur, L. Sabbatini, and P. Zambonin, “Multi-parameter gas sensors based on organic thin-film-transistors,” Sensors and Actuators B: Chemical, vol. 67, pp. 312-316, 2000.
    [55] K. Potje-Kamloth, “Chemical gas sensors based on organic semiconductor polypyrrole,” Critical reviews in analytical chemistry, vol. 32, pp. 121-140, 2002.
    [56] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, vol. 268, pp. 1466-1468, 1995.
    [57] H. Chik and J. Xu, “Nanometric superlattices: non-lithographic fabrication, materials, and prospects,” Materials Science and Engineering: R: Reports, vol. 43, pp. 103-138, 2004.
    [58] G. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin solid films, vol. 297, pp. 192-201, 1997.
    [59] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Applied Physics Letters, vol. 72, pp. 1173-1175, 1998.
    [60] T. Ohgai, X. Hoffer, L. Gravier, J.-E. Wegrowe, and J.-P. Ansermet, “Bridging the gap between template synthesis and microelectronics: spin-valves and multilayers in self-organized anodized aluminium nanopores,” Nanotechnology, vol. 14, p. 978, 2003.
    [61] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, “Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum,” Japanese journal of applied physics, vol. 36, p. 7791, 1997.
    [62] A. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” Journal of applied physics, vol. 84, pp. 6023-6026, 1998.
    [63] J. Roncali, “Conjugated poly (thiophenes): synthesis, functionalization, and applications,” Chemical Reviews, vol. 92, pp. 711-738, 1992.
    [64] R. Elsenbaumer, K. Y. Jen, and R. Oboodi, “Processible and environmentally stable conducting polymers,” Synthetic Metals, vol. 15, pp. 169-174, 1986.
    [65] K.-Y. Jen, G. Miller, and R. L. Elsenbaumer, “Highly conducting, soluble, and environmentally-stable poly (3-alkylthiophenes),” J. Chem. Soc., Chem. Commun., pp. 1346-1347, 1986.
    [66] A. Assadi, G. Gustafsson, M. Willander, C. Svensson, and O. Inganäs, “Determination of field-effect mobility of poly (3-hexylthiophene) upon exposure to NH 3 gas,” Synthetic Metals, vol. 37, pp. 123-130, 1990.
    [67] H. Fukuda, M. Ise, T. Kogure, and N. Takano, “Gas sensors based on poly-3-hexylthiophene thin-film transistors,” Thin Solid Films, vol. 464, pp. 441-444, 2004.
    [68] J. W. Jeong, Y. D. Lee, Y. M. Kim, Y. W. Park, J. H. Choi, T. H. Park, et al., “The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors,” Sensors and Actuators B: Chemical, vol. 146, pp. 40-45, 2010.
    [69] M.-Z. Dai, Y.-L. Lin, H.-C. Lin, H.-W. Zan, K.-T. Chang, H.-F. Meng, et al., “Detecting Breath Ammonia for Non-invasive Diagnostic based on Low-Cost Organic Diode with Vertical Nanojunctions,” IEEE SENSORS PROCEEDINGS, pp. 908-911, 2012.
    [70] T. Adachi, J. Brazard, R. J. Ono, B. Hanson, M. C. Traub, Z.-Q. Wu, et al., “Regioregularity and single polythiophene chain conformation,” The Journal of Physical Chemistry Letters, vol. 2, pp. 1400-1404, 2011.
    [71] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly (3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, vol. 69, pp. 4108-4110, 1996.
    [72] B. Choi, H. Im, J. Song, and K. Yoon, “Optical and electrical properties of Ga 2 O 3-doped ZnO films prepared by rf sputtering,” Thin Solid Films, vol. 193, pp. 712-720, 1990.
    [73] R. Wang, L. L. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide,” Journal of materials research, vol. 11, pp. 1659-1664, 1996.
    [74] D. A. Neamen and B. Pevzner, Semiconductor physics and devices: basic principles vol. 3: McGraw-Hill New York, 2003.
    [75] A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. Fréchet, et al., “Oligo-and polythiophene/ZnO hybrid nanowire solar cells,” Nano letters, vol. 10, pp. 334-340, 2009.
    [76] E. Katsia, N. Huby, G. Tallarida, B. Kutrzeba-Kotowska, M. Perego, S. Ferrari, et al., “Poly (3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications,” Applied Physics Letters, vol. 94, p. 143501, 2009.
    [77] V. Saxena, D. Aswal, M. Kaur, S. Koiry, S. Gupta, J. Yakhmi, et al., “Enhanced NO 2 selectivity of hybrid poly (3-hexylthiophene): ZnO-nanowire thin films,” Applied physics letters, vol. 90, pp. 043516-043516-3, 2007.
    [78] 陳盈志,“具鎳摻雜之ITO複層膜對P3HT:PCBM太陽能電池之特性影響研究”,2011.
    [79] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry of materials, vol. 10, pp. 2470-2480, 1998.
    [80] M. Prasad, V. Sahula, S. Member, and V. K. Khanna, “ZnO Etching and Microtunnel Fabrication for High-Reliability MEMS Acoustic Sensor(ZnO eathing rate,” IEEE Transactions On Device And Materials Rrllability, vol. 14, 2014.
    [81] C. J. Yang, S. M. Wang, S. W. Liang, Y. H. Chang, C. Chen, and J. M. Shieh, “Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition,” Applied Physics Letters, vol. 90, p. 033104, Jan 15 2007.

    下載圖示
    QR CODE