研究生: |
黃傳楷 Huang, Chuan-Kai |
---|---|
論文名稱: |
臺北捷運路網脆弱度分析 The Analysis of Vulnerability for Metro Taipei |
指導教授: |
王聖鐸
Wang, Sen-Do |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 臺北捷運 、脆弱度 、路網分析 、路網分群 |
英文關鍵詞: | Metro Taipei, Vulnerability, Network Analysis, Network Grouping |
DOI URL: | https://doi.org/10.6345/NTNU202202192 |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:40 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺北捷運營運屆滿20週年,路網規模已發展出5條主線與2條支線,計有108個車站,營運里程約131.1公里。根據臺北市捷運局2016年資料顯示,每日平均載運人次達200萬人次,顯示臺北市與新北市居民高度仰賴本系統通勤,一旦因為天然災害或意外事件影響捷運運作,將造成莫大的負面影響。
為瞭解臺北捷運路網內潛在的脆弱站點,本研究引用聯合國跨政府氣候變遷小組(IPCC)所定義的脆弱度(vulnerability)影響指標:暴露度(exposure)、敏感度(sensitivity)與調適能力(adaptability)。分別計算臺北捷運路網站點脆弱度影響人次,再偵測路網中潛在的分群結構,進行整體脆弱度評估。本研究對路網的定義是以捷運車站為節點(node),前後站之間視為具有方向性的連結(arc),形成抽象性的位相關係(topology)路網。在脆弱度指標方面,則是利用捷出入運站閘門的旅運人次統計數據作為暴露度因子,再使用路網分析的中心性指標(centrality),找出路網結構中易受影響的敏感站點,最後將周邊公車路線及公共自行車架數目作為加入模式計算,嘗試找出路網中仍脆弱的站點。
本研究以地理視覺化方式呈現脆弱度上述3個抽象意涵,研究結果發現單就時間維度而言,系統最為脆弱的時間為傍晚17-19點,人潮從市中心少數站點大量湧入站點。單就路線而言,最為脆弱的路線為板南線(藍線),有9個高脆弱度的站點。路網分群結果也能給予相關單位在管理層面較為一致性的措施。
After 2 decades operation, the Metro Taipei now serves over 2 million passengers per day, with its 5 main lines: Wenhu Line, Tamsui-Xinyi Line, Songshan-Xindian Line, Zhonghe-Xinlu Line and Bannan Line. The network consists of 108 stations and the total length of rail is 131.1 kilometers long, which covers both Taipei and New Taipei City. Even a small accident which causes the system to stop will result in tremendous inconvenience to the passengers.
In this paper, we introduce the three index, (1)exposure, (2) sensitivity, and (3)adaptability, proposed by the IPCC of the United Nations, to evaluate the vulnerability of a transportation network – the Metro Taipei. The exposure is defined as the risk of accidents and the pressure on the network. The sensitivity is defined as the betweenness centrality of the network. The betweenness centrality reveals how many times a node would be passed through between any two other nodes. The adaptability is defined as the recovering ability or the alternatives while a node is suffering an accident. The nearby bus stops and public bike stations are considered as the alternatives while a metro station is becoming disabled. The more bus stops or public bike stations means higher adaptability of a metro station.
We propose an integrated vulnerability index to considering the exposure, the sensitivity, and the adaptability of each station. The result indicates some high vulnerable station, and the system is vulnerable at the work-to-home traffic peak time. The integrated vulnerability index is then visualized on the map for better illustration of the negative impact and the positive recoverability of the Metro Taipei.
英文部分:
Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268-281.
Berdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy, 9(2), 117-127. doi:http://dx.doi.org/10.1016/S0967-070X(02)00011-2
Berdica, K., & Mattsson, L.-G. (2007). Vulnerability: A Model-Based Case Study of the Road Network in Stockholm. In A. T. Murray & T. H. Grubesic (Eds.), Critical Infrastructure: Reliability and Vulnerability (pp. 81-106). Berlin, Heidelberg: Springer Berlin Heidelberg.
Bill Rankin, L. H. (2003). THE BOSTON T Retrieved from http://www.radicalcartography.net/?bostonnow
Billinton, R., & Allan, R. N. (1992). Reliability Evaluation of Engineering Systems, Concepts and Techniques (2 ed.). New York: Springer US.
Chambers, R. (1989). Editorial introduction: vulnerability, coping and policy. IDS bulletin, 20(2), 1-7.
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 036125. Retrieved from http://link.aps.org/doi/10.1103/PhysRevE.73.036125
Cutter, S. L. (1996). Vulnerability to environmental hazards. Progress in Human Geography, 20(4), 529-539.
Derrible, S., & Kennedy, C. (2010). The complexity and robustness of metro networks. Physica A: Statistical Mechanics and its Applications, 389(17), 3678-3691. doi:http://dx.doi.org/10.1016/j.physa.2010.04.008
Ducruet, C., & Lugo, I. (2013). Structure and dynamics of transportation networks: Models. The SAGE handbook of transport studies, 347.
Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected world: Cambridge University Press.
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:http://dx.doi.org/10.1016/0378-8733(78)90021-7
Guimerà, R., Mossa, S., A., T., & Amaral, L. A. N. (2005 ). The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles. Proceedings of the National Academy of Sciences, 102(22), 7794–7799.
Hong, L., Yan, Y., Ouyang, M., Tian, H., & He, X. (2017). Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems. Reliability Engineering & System Safety, 158, 58-72. doi:https://doi.org/10.1016/j.ress.2016.10.001
IPCC, A. (2007). Intergovernmental panel on climate change: IPCC Secretariat Geneva.
Jenelius, E. (2009). Network structure and travel patterns: explaining the geographical disparities of road network vulnerability. Journal of Transport Geography, 17(3), 234-244. doi:http://dx.doi.org/10.1016/j.jtrangeo.2008.06.002
Jenelius, E., & Mattsson, L.-G. (2012). Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study. Transportation Research Part A: Policy and Practice, 46(5), 746-760. doi:http://dx.doi.org/10.1016/j.tra.2012.02.003
Jenelius, E., Petersen, T., & Mattsson, L.-G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537-560. doi:http://dx.doi.org/10.1016/j.tra.2005.11.003
Khademi, N., Balaei, B., Shahri, M., Mirzaei, M., Sarrafi, B., Zahabiun, M., & Mohaymany, A. S. (2015). Transportation network vulnerability analysis for the case of a catastrophic earthquake. International Journal of Disaster Risk Reduction, 12, 234-254. doi:http://dx.doi.org/10.1016/j.ijdrr.2015.01.009
Lee, K., Jung, W.-S., Park, J. S., & Choi, M. Y. (2008). Statistical analysis of the Metropolitan Seoul Subway System: Network structure and passenger flows. Physica A: Statistical Mechanics and its Applications, 387(24), 6231-6234. doi:http://dx.doi.org/10.1016/j.physa.2008.06.035
Newell, B., Crumley, C., Hassan, N., Lambin, E., Pahl-Wostl, C., Underdal, A., & Wasson, R. (2005). A conceptual template for integrative human-environment research. Global Environmental Change, 15(4), 299-307.
Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113. Retrieved from https://link.aps.org/doi/10.1103/PhysRevE.69.026113
Oswald, M., & Treat, C. (2013). Assessing Public Transportation Vulnerability to Sea Level Rise: A Case Study Application. Journal of Public Transportation, 16(3), 59-77. doi:http://dx.doi.org/10.5038/2375-0901.16.3.4
Rodríguez-Núñez, E., & García-Palomares, J. C. (2014). Measuring the vulnerability of public transport networks. Journal of Transport Geography, 35, 50-63. doi:http://dx.doi.org/10.1016/j.jtrangeo.2014.01.008
Schuster, H. G. (2009). Reviews of nonlinear dynamics and complexity (Vol. 2): John Wiley & Sons.
Sun, D., & Guan, S. (2016). Measuring vulnerability of urban metro network from line operation perspective. Transportation Research Part A: Policy and Practice, 94, 348-359. doi:http://dx.doi.org/10.1016/j.tra.2016.09.024
Sun, Y., Mburu, L., & Wang, S. (2016). Analysis of community properties and node properties to understand the structure of the bus transport network. Physica A: Statistical Mechanics and its Applications, 450, 523-530. doi:http://dx.doi.org/10.1016/j.physa.2015.12.150
Sussman, J. (2002). Introduction to Transportation Systems. Boston: Artech House.
Taaffe, E. J., Gauthier, H. L., & O'Kelly, M. E. (1996). Geography of Transportation (2 ed.): Prentice Hall College Div.
Timmerman, P. (1981). Vulnerability, resilience, and the collapse of society: A review of models and possible climatic applications, Institute of Environmental Studies. Toronto: University of Toronto.
Valente, T. W. (2010). Social Networks and Health: Models, Methods, and Applications: Oxford Scholarship Online.
Wakabayashi, H., & Iida, Y. (1992). Upper and lower bounds of terminal reliability in road networks: an efficient method with Boolean algebra. Journal of Natural Disaster Science, 14(1), 29-44.
Zhang, J., Xu, X., Hong, L., Wang, S., & Fei, Q. (2011). Networked analysis of the Shanghai subway network, in China. Physica A: Statistical Mechanics and its Applications, 390(23), 4562-4570. doi:http://dx.doi.org/10.1016/j.physa.2011.06.022
Zhang, J., Zhao, M., Liu, H., & Xu, X. (2013). Networked characteristics of the urban rail transit networks. Physica A: Statistical Mechanics and its Applications, 392(6), 1538-1546. doi:http://dx.doi.org/10.1016/j.physa.2012.11.036
中文部分
林冠慧, & 張長義. (2015). 脆弱性研究的演變與當前發展. [The Evolution and Develpment of Vulnerability Studies]. 地理學報(77), 49-82. doi:10.6161/jgs.2015.77.03
洪政耀. (2013). 區域災害系統評估不同空間尺度之災害風險研究 - 以臺灣臺東縣坡地環境為例. (博士), 國立臺灣師範大學, 台北市.
洪雅雯. (2005). 建立都市災害脆弱度指標之研究. (碩士), 逢甲大學, 台中市.
謝承憲, & 馮正民. (2016). 臺灣公路系統之脆弱度與回復力評估. [Vulnerability and resilience of highway networks in taiwan]. 運輸計劃季刊, 45(3), 235-250. Retrieved from http://www.AiritiLibrary.com/Publication/Index/10177159-201609-201702080016-201702080016-235-250
謝承憲, 馮正民, & 柯旻嬋. (2014). 構建都會區運輸路網脆弱度評量模式. [Constructing an Assessment Model for Metropolitan Road Network Vulnerability]. 運輸學刊, 26(3), 349-372. Retrieved from http://www.AiritiLibrary.com/Publication/Index/10272275-201409-201410200070-201410200070-349-372
謝承憲, 馮正民, & 賴怡心. (2015). 臺灣西部城際旅客運輸路網脆弱度之評估模式. [Vulnerability Assessment of Intercity Passenger Transportation Network in the Western Taiwan Corridor]. 都市與計劃, 42(4), 367-388. doi:10.6128/CP.42.4.367
賴秀純. (2012). 中彰投公路客運路網結構研究. (碩士), 國立彰化師範大學, 彰化縣.
陳韋宏. (2012). 臺北市之聯營公車客運版圖分布. (碩士), 國立臺灣師範大學, 台北市.