簡易檢索 / 詳目顯示

研究生: 黃君秦
Huang, Chun-Chin
論文名稱: 有氧運動前攝取咖啡因對糖尿病前期者運動後血糖調控之影響
Effect of Pre-Exercise Caffeine Ingestion on Post-Exercise Glycemia Regulation in Prediabetes
指導教授: 王鶴森
Wang, Ho-Seng
口試委員: 吳慧君
Wu, Huey-June
林信甫
Lin, Hsin-Fu
劉宏文
Liu, Hung-Wen
陳勇志
Chen, Yung-Chih
王鶴森
Wang, Ho-Seng
口試日期: 2021/06/11
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 胰島素阻抗葡萄糖耐受度空腹血糖
英文關鍵詞: insulin resistance, glucose tolerance, fasting plasma glucose
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100495
論文種類: 學術論文
相關次數: 點閱:318下載:59
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:糖尿病前期為第二類型糖尿病 (type 2 diabetes, T2D) 的高風險族群,透過運動時骨骼肌收縮刺激葡萄糖吸收與維持血糖恆定,是非藥物控制血糖、降低罹患糖尿病的有效方法。然而,咖啡因 (caffeine) 是一項廣泛使用的食品添加物,其不利於血糖控制的效果與運動相反,因此運動前攝取咖啡因對糖尿病前期者運動後血糖調控的影響仍需進一步釐清。目的:探討糖尿病前期者,攝取咖啡因對單次有氧運動後空腹血糖、胰島素、C-胜鍊胰島素 (C-peptide) 及葡萄糖耐受度的影響。方法:招募12名糖尿病前期男性,採雙盲、重複量數及平衡次序設計,所有參與者分別接受咖啡因+運動 (CE, 3mg/kg) 與安慰劑+運動 (PE) 兩種處理,運動形式為30分鐘60% VO2max (maximal oxygen uptake) 強度的跑步運動,並於攝取前、攝取後30分鐘/運動前、運動後立即及運動後120分鐘檢測血糖、胰島素及 C-peptide 濃度,另外,運動後立即進行口服葡萄糖耐受度測驗 (oral glucose tolerance test, OGTT)。結果:血糖在處理與時間因子的交互作用未達顯著 (p > .05),在處理因子主要效果中,CE 處理之平均血糖值顯著高於 PE 處理 (133.87 ± 41.22 vs 127.04 ± 34.17 mg/dl) (p < .05);而胰島素濃度在處理與時間因子的交互作用則達顯著 (p = .010),單純主要效果顯示,CE 處理在運動後30及120分鐘顯著高於PE 處理;另外,CE 處理於 OGTT 測驗中血糖與胰島素濃度變化總曲線下面積 (area under the curve, AUC) 亦顯著高於PE 處理 (p < .05)。而 CE 處理與 PE處理間之 C-peptide 濃度則無顯著差異 (p > .05)。結論:糖尿病前期者有氧運動前攝取咖啡因會引發體內血糖、胰島素濃度提升,產生短暫性胰島素敏感度下降反應,因此,從事有氧運動前攝取咖啡因可能不利於糖尿病前期者運動後的血糖調控。

    Background: Individuals with prediabetes increase the risk of developing type 2 diabetes. Exercise is potent stimulator of skeletal muscle glucose uptake and thus good for maintaining glucose homeostasis. That could be a conducive method to improve blood glucose regulation and prevent diabetes without medication intake. In contrast to exercise, the ingestion of caffeine is adverse for blood glucose regulation. Therefore, it is still unknown whether such effects of pre-exercise caffeine ingestion on post-exercise glycemia regulation in prediabetes. Purpose: It aimed to investigate the effects of caffeine on fasting glucose, insulin, C-peptide and glucose tolerance responses after acute aerobic exercise in individuals with prediabetes. Method: The study was a double-blinded, randomized and crossover trials design and twelve men with prediabetes will be recruited. Participants randomly underwent two different trials which were caffeine + exercise (CE, 3 mg/kg) and placebo + exercise (PE) one week apart in a counterbalanced and double-blinded design. Participants performed a 30-min running at 60% VO2max (maximal oxygen uptake) 30 min after caffeine / placebo ingestion in both trials. Blood glucose, insulin, and C-peptide concentrations were measured at pre-ingestion, pre-exercise, immediately after and 120 min after exercise. In addition, participants received OGTT immediately after exercise, with blood glucose and insulin measured every 30 min during the tests. Results: The results showed that no significant trial × time interaction was observed in blood glucose (p > .05). Regarding the main values of trial factor, blood glucose, (133.87 ± 41.22 vs 127.04 ± 34.17 mg/dl) in the CE were higher than PE (p < .05). Then, there were statistically significant differences in insulin between trials and time points (p = .010). The simple main effect indicated that insulin of CE at post-exercise 30 and 120 (OGTT 30, 120) were significant higher than the PE. Moreover, there were statistically significant differences (p < .05) in blood glucose and insulin AUC between trials. That in CE was significant higher than the PE trial. In addition, there were no differences in C-peptide between CE and PE trials at all time points. Conclusion: Acute caffeine ingestion could increase blood glucose and insulin post aerobic exercise, it will have a transient negative impact on insulin sensitivity in prediabetes. Thus, caffeine ingestion, though combined with aerobic exercise, might have a negative impact on glycemic control among prediabetes.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 研究假設 3 第四節 名詞操作性定義 3 第五節 研究限制 4 第六節 研究重要性 4 第貳章 文獻探討 5 第一節 糖尿病前期簡介 5 第二節 有氧運動對糖尿病前期血糖調控的效益 7 第三節 咖啡因對葡萄糖代謝之影響路徑 15 第四節 咖啡因攝取對血糖調控的影響 17 第五節 本章總結 19 第參章 研究方法與步驟 20 第一節 研究參與者 20 第二節 實驗時間與地點 21 第三節 實驗流程 21 第四節 實驗方法與步驟 23 第五節 資料處理 25 第肆章 結果 26 第一節 研究參與者基本資料 26 第二節 不同實驗處理及葡萄糖耐受度測驗對血液葡萄糖濃度的影響 27 第三節 不同實驗處理及葡萄糖耐受度測驗對血液胰島素濃度的影響 29 第四節 不同實驗處理及葡萄糖耐受度測驗對血液 C-peptide 濃度的影響 32 第五節 HOMA-IR 與 HOMA-β 指標之變化 33 第伍章 討論與建議 35 第一節 咖啡因與運動對血液葡萄糖濃度變化的影響 35 第二節 咖啡因與運動對血液胰島素濃度變化的影響 38 第三節 咖啡因與運動對血液 C-peptide 濃度變化的影響 40 第四節 HOMA-IR 與 HOMA-β 指標的變化 41 第五節 結論與建議 43 參考文獻 44 附錄 54 附錄一 研究參與者身體活動調查問卷 54 附錄二 研究參與者知情同意書 60 附錄三 最大攝氧量紀錄表 64 附錄四 飲食紀錄表 65 附錄五 研究倫理審查核可證明書 66 附錄六 不同處理與不同時間點之血糖變異數分析摘要表 68 附錄七 不同處理與不同時間點之胰島素變異數分析摘要表 68 附錄八 不同處理與不同時間點之 C-peptide 變異數分析摘要表 69 附錄九 不同處理與不同時間點在 OGTT 中對血糖影響之變異數分析摘要表 69 附錄十 不同處理與不同時間點在 OGTT 中對胰島素影響之變異數分析摘要表 70 附錄十一 不同處理與不同時間點之 HOMA-IR 變異數分析摘要表 70 附錄十二 不同處理與不同時間點之 HOMA-β 變異數分析摘要表 71

    衛生福利部國民健康署 (2018)。三高防治專區。
    取自:https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359
    衛生福利部國民健康署 (2016)。糖尿病與我。
    取自:https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1205
    Acheson, K. J., Zahorska-Markiewicz, B., Pittet, P., Anantharaman, K., & Jéquier, E.
    (1980). Caffeine and coffee: their influence on metabolic rate and substrate
    utilization in normal weight and obese individuals. The American Journal of
    Clinical Nutrition, 33(5), 989–997. doi: org/10.1093/ajcn/33.5.989
    Alizadeh, A. A., Rahmani-Nia, F., Mohebbi, H., & Zakerkish, M. (2016). Acute aerobic
    exercise and plasma levels of orexin A, insulin, glucose, and insulin resis-tance
    in males with type 2 diabetes. Journal of Health Sciences, 8(1), e32217.
    American Diabetes Association (2020). 2. Classification and diagnosis of diabetes:
    standards of medical care in diabetes-2020. Diabetes Care, 43(Suppl 1), S14–
    S31. doi: org/10.2337/dc20-S002
    American Diabetes Association (2014). Diagnosis and classification of diabetes
    mellitus. Diabetes Care, 37(Suppl 1), S81–S90. doi: org/10.2337/dc14-S081
    Arslanian, S., Kim, J. Y., Bacha, F., Chan, C., Ismail, H. M., Katz, L. E. L., ... & White, N.
    H (2019). the shape of the glucose response curve during an oral glucose
    tolerance test: forerunner of heightened glycemic failure rates and accelerated
    decline in β-cell function in today. Diabetes care, 42(1), 164–172.
    doi: org/10.2337/dc18-1122
    Battram, D. S., Arthur, R., Weekes, A., & Graham, T. E. (2006). The glucose
    intolerance induced by caffeinated coffee ingestion is less pronounced than
    that due to alkaloid caffeine in men. The Journal of Nutrition, 136(5), 1276–
    1280. doi: org/10.1093/jn/136.5.1276
    Beaudoin, M. S., Allen, B., Mazzetti, G., Sullivan, P. J., & Graham, T. E. (2013). Caffeine
    ingestion impairs insulin sensitivity in a dose-dependent manner in both men
    and women. Applied Physiology, Nutrition, and Metabolism, 38(2), 140–147.
    doi:org/10.1139/apnm-2012-0201
    Bello, A. I., Owusu-Boakye, E., Adegoke, B. O., & Adjei, D. N. (2011). Effects of
    aerobic exercise on selected physiological parameters and quality of life in
    patients with type 2 diabetes mellitus. International Journal of General
    Medicine, 4, 723–727. doi: org/10.2147/IJGM.S16717
    Bi, Y., Zhu, D., Jing, Y., Hu, Y., Feng, W., Shen, S., ... & Yang, D. (2012). Decreased beta
    cell function and insulin sensitivity contributed to increasing fasting glucose in
    Chinese. Acta diabetologica, 49(1), 51-58.
    Bordenave, S., Brandou, F., Manetta, J., Fédou, C., Mercier, J., & Brun, J. F. (2008).
    Effects of acute exercise on insulin sensitivity, glucose effectiveness and
    disposition index in type 2 diabetic patients. Diabetes and Metabolism, 34(3),
    250–257. doi: org/10.1016/j.diabet.2007.12.008
    Boulé, N. G., Weisnagel, S. J., Lakka, T. A., Tremblay, A., Bergman, R. N., Rankinen, T.,
    Bouchard, C. (2005). Effects of exercise training on glucose homeostasis: the
    HERITAGE Family Study. Diabetes Care, 28(1), 108–114.
    doi: org/10.2337/diacare.28.1.108
    Borg G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian
    Journal of Rehabilitation Medicine, 2(2), 92–98.
    Chung, S. T., Ha, J., Onuzuruike, A. U., Kasturi, K., Galvan‐De La Cruz, M., Bingham, B.
    A., ... & Sumner, A. E. (2017). Time to glucose peak during an oral glucose
    tolerance test identifies prediabetes risk. Clinical endocrinology, 87(5), 484-
    491.
    Church, T. S., Blair, S. N., Cocreham, S., Johannsen, N., Johnson, W., Kramer, K.,
    Earnest, C. P. (2010). Effects of aerobic and resistance training on hemoglobin
    A1c levels in patients with type 2 diabetes: a randomized controlled trial.
    Journal of the American Medical Association, 304(20), 2253–2262.
    doi: org/10.1001/jama.2010.1710
    Colberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R.,
    Braun, B. (2010). Exercise and type 2 diabetes: the American College of Sports
    Medicine and the American Diabetes Association: joint position statement.
    Diabetes Care, 33(12), 147–167. doi: org/10.2337/dc10-9990
    DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J.,
    ...Simonson, D. C. (2015). Type 2 diabetes mellitus. Nature Reviews Disease
    Primers, 1(1),1-22.
    de Lemos, E. T., Oliveira, J., Pinheiro, J. P., & Reis, F. (2012). Regular physical exercise
    as a strategy to improve antioxidant and anti-inflammatory status: benefits in
    type 2 diabetes mellitus. Oxidative Medicine and Cellular Longevity,
    2012,741545. doi: org/10.1155/2012/741545
    Dodd, S. L., Herb, R. A., & Powers, S. K. (1993). Caffeine and exercise performance.
    Sports Medicine, 15(1), 14-23. doi: 10.2165/00007256-199315010-00003
    Egawa, T., Hamada, T., Ma, X., Karaike, K., Kameda, N., Masuda, S., … Hayashi, T.
    (2011). Caffeine activates preferentially α1-isoform of 5'AMP-activated protein
    kinase in rat skeletal muscle. Acta physiologica, 201(2), 227–238.
    doi: org/10.1111/j.1748-1716.2010.02169.x
    Erickson, M. L., Zhang, H., Mey, J. T., & Kirwan, J. P. (2020). Exercise training impacts
    skeletal muscle clock machinery in prediabetes. Medicine and Science in
    Sports and Exercise, 52(10), 2078–2085.
    doi: org/10.1249/MSS.0000000000002368
    Fain J. N. (2006). Release of interleukins and other inflammatory cytokines by
    human adipose tissue is enhanced in obesity and primarily due to the nonfat
    cells. Vitamins and Hormones, 74, 443–477. doi: org/10.1016/S0083-
    6729(06)74018-3
    Gavrieli, A., Fragopoulou, E., Mantzoros, C. S., & Yannakoulia, M. (2013). Gender
    and body mass index modify the effect of increasing amounts of caffeinated
    coffee on postprandial glucose and insulin concentrations; a randomized,
    controlled, clinical trial. Metabolism,62(8), 1099-1106.
    doi: org/10.1016/j.metabol.2013.02.003
    Greer, F., Hudson, R., Ross, R., & Graham, T. (2001). Caffeine ingestion decreases
    glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary
    humans.Diabetes, 50(10), 2349–2354. doi: org/10.2337/diabetes.50.10.2349
    Goods, P. S. R., Landers, G., & Fulton, S. (2017). Caffeine ingestion improves
    repeated freestyle sprints in elite male swimmers. Journal of Sports Science
    and Medicine, 16(1),93–98.
    Graham, T. E., Sathasivam, P., Rowland, M., Marko, N., Greer, F., & Battram, D.
    (2001). Caffeine ingestion elevates plasma insulin response in humans during
    an oral glucose tolerance test. Canadian Journal of Physiology and
    Pharmacology, 79(7), 559–565.
    Graham, T. E., & Spriet, L. L. (1995). Metabolic, catecholamine, and exercise
    performance responses to various doses of caffeine. Journal of Applied
    Physiology, 78(3), 867-874. doi: 10.1152/jappl.1995.78.3.867
    Guo S. (2014). Insulin signaling, resistance, and the metabolic syndrome: insights
    frommouse models into disease mechanisms. The Journal of Endocrinology,
    220(2),1–23.doi: org/10.1530/JOE-13-0327
    Herzig, K. H., Ahola, R., Leppäluoto, J., Jokelainen, J., Jämsä, T., & Keinänen-
    Kiukaanniemi, S. (2014). Light physical activity determined by a motion sensor
    decreases insulin resistance, improves lipid homeostasis and reduces visceral
    fat in high-risk subjects: PreDiabEx study RCT. International Journal of Obesity,
    38(8), 1089–1096. doi: org/10.1038/ijo.2013.224
    Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, … Hardie, D. G.
    (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative
    upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2(1), 9–19.
    doi: org/10.1016/j.cmet.2005.05.009
    Hussey, S. E., McGee, S. L., Garnham, A., McConell, G. K., & Hargreaves, M. (2012).
    Exercise increases skeletal muscle GLUT4 gene expression in patients with
    type 2 diabetes. Diabetes, Obesity and Metabolism, 14(8), 768–771.
    doi: org/10.1111/j.1463-1326.2012.01585.x
    International Diabetes Federation. (2019). IDF diabetes atlas (9th ed.). Belgium,
    Brussels: International Diabetes Federation
    Jamurtas, A. Z., Theocharis, V., Koukoulis, G., Stakias, N., Fatouros, I. G., Kouretas, D.,
    & Koutedakis, Y. (2006). The effects of acute exercise on serum adiponectin
    and resistin levels and their relation to insulin sensitivity in overweight males. European Journal of Applied Physiology, 97(1), 122. doi: org/10.1007/s00421-006-
    0169-x
    Jensen, T. E., Rose, A. J., Hellsten, Y., Wojtaszewski, J. F., & Richter, E. A. (2007).
    Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in
    rodent soleus muscle. American Journal of Physiology-Endocrinology and
    Metabolism, 293(1) 286–292. doi: org/10.1152/ajpendo.00693.2006
    Jones, A. G., & Hattersley, A. T. (2013). The clinical utility of C-peptide measurement
    in the care of patients with diabetes. Diabetic Medicine, 30(7), 803–817.
    doi: org/10.1111/dme.12159
    Jorge, M. L., de Oliveira, V. N., Resende, N. M., Paraiso, L. F., Calixto, A., Diniz, A. L., …
    Geloneze, B. (2011). The effects of aerobic, resistance, and combined exercise
    on metabolic control, inflammatory markers, adipocytokines, and muscle
    insulin signaling in patients with type 2 diabetes mellitus. Metabolism: Clinical
    and Experimental, 60(9), 1244–1252. doi: org/10.1016/j.metabol.2011.01.006
    Karstoft, K., Winding, K., Knudsen, S. H., Nielsen, J. S., Thomsen, C., Pedersen, B. K.,
    & Solomon, T. P. (2013). The effects of free-living interval-walking training on
    glycemic control, body composition, and physical fitness in type 2 diabetic
    patients: a randomized, controlled trial. Diabetes Care, 36(2), 228–236.
    doi: org/10.2337/dc12-0658
    Keijzers, G. B., De Galan, B. E., Tack, C. J., & Smits, P. (2002). Caffeine can decrease i
    nsulin sensitivity in humans. Diabetes Care, 25(2), 364–369.
    doi: org/10.2337/diacare.25.2.364
    Kennedy, J. W., Hirshman, M. F., Gervino, E. V., Ocel, J. V., Forse, R. A., Hoenig, S. J., ...
    Horton, E. S. (1999). Acute exercise induces GLUT4 translocation in skeletal
    muscle of normal human subjects and subjects with type 2 diabetes. Diabetes,
    48(5), 1192–1197. doi: org/10.2337/diabetes.48.5.1192
    Knudsen, S. H., Karstoft, K., Pedersen, B. K., van Hall, G., & Solomon, T. P. (2014). The
    immediate effects of a single bout of aerobic exercise on oral glucose
    tolerance across the glucose tolerance continuum. Physiological Reports, 2(8),
    e12114. doi: org/10.14814/phy2.12114
    Kolnes, A. J., Ingvaldsen, A., Bolling, A., Stuenaes, J. T., Kreft, M., Zorec, R., … Jensen,
    J. (2010). Caffeine and theophylline block insulin-stimulated glucoseuptake
    and PKB phosphorylation in rat skeletal muscles. Acta Physiologica, 200(1), 65–
    74. doi: org/10.1111/j.1748-1716.2010.02103.x
    Krebs, J. D., Parry-Strong, A., Weatherall, M., Carroll, R. W., & Downie, M. (2012). A
    cross-over study of the acute effects of espresso coffee on glucose tolerance
    and insulin sensitivity in people with type 2 diabetes mellitus. Metabolism,
    61(9), 1231–1237. doi: org/10.1016/j.metabol.2012.01.021
    Lane, J. D., Barkauskas, C. E., Surwit, R. S., & Feinglos, M. N. (2004). Caffeine impairs
    glucose metabolism in type 2 diabetes. Diabetes Care, 27(8), 2047–2048.
    doi: org/10.2337/diacare.27.8.2047
    Lane, J. D., Feinglos, M. N., & Surwit, R. S. (2008). Caffeine increases ambulatory
    glucose and postprandial responses in coffee drinkers with type 2 diabetes.
    Diabetes Care, 31(2), 221–222. doi: org/10.2337/dc07-1112
    Lane, J. D., Hwang, A. L., Feinglos, M. N., & Surwit, R. S. (2007). Exaggeration of
    postprandial hyperglycemia in patients with type 2 diabetes by administration
    of caffeine in coffee. Endocrine Practice, 13(3), 239–243.
    doi: org/10.4158/EP.13.3.239
    Lee, S., Min, J. Y., & Min, K. B. (2020). Caffeine and Caffeine Metabolites in Relation
    to Insulin Resistance and Beta Cell Function in US Adults. Nutrients, 12(6),
    1783.
    Levinger, I., Jerums, G., Stepto, N. K., Parker, L., Serpiello, F. R., McConell, G. K.,
    Anderson, M., Hare, D. L., Byrnes, E., Ebeling, P. R., & Seeman, E. (2014). The
    effect of acute exercise on undercarboxylated osteocalcin and insulin sensi-
    tivity in obese men. Journal of Bone and Mineral Research, 29(12), 2571–2576.
    doi: org/10.1002/jbmr.2285
    Mahmud, A., & Feely, J. (2001). Acute effect of caffeine on arterial stiffness and
    aortic pressure waveform. Hypertension, 38(2), 227-231.
    doi:10.1161/01.HYP.38.2.227
    Malin, S. K., Gerber, R., Chipkin, S. R., & Braun, B. (2012). Independent and com-
    bined effects of exercise training and metformin on insulin sensitivity in
    individuals with prediabetes. Diabetes Care, 35(1), 131–136.
    doi: org/10.2337/dc11-0925
    Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner,
    R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell
    function from fasting plasma glucose and insulin concentrations in man.
    Diabetologia, 28(7), 412-419.
    McClean, C. M., McNeilly, A. M., Trinick, T. R., Murphy, M. H., Duly, E., McLaughlin, J.,
    McEneny, J., Burke, G., & Davison, G. W. (2009). Acute exercise and impaired
    glucose tolerance in obese humans. Journal of Clinical Lipidology, 3(4), 262–
    268. doi: org/10.1016/j.jacl.2009.07.001
    McConnell T. R. (1988). Practical considerations in the testing of VO2max in
    runners. Sports Medicine, 5(1), 57–68. doi: org/10.2165/00007256-198805010-
    00005
    Musi, N., Fujii, N., Hirshman, M. F., Ekberg, I., Fröberg, S., Ljungqvist, O., …
    Goodyear, L. J. (2001). AMP-activated protein kinase (AMPK) is activated in
    muscle of subjects with type 2 diabetes during exercise. Diabetes, 50(5), 921–
    927. doi: org/10.2337/diabetes.50.5.921
    Richardson, D. K., Kashyap, S., Bajaj, M., Cusi, K., Mandarino, S. J., Finlayson, …
    Mandarino, L. J. (2005). Lipid infusion decreases the expression of nuclear
    encoded mitochondrial genes and increases the expression of extracellular
    matrix genes in human skeletal muscle. The Journal of Biological Chemistry,
    280(11), 10290–10297.doi: org/10.1074/jbc.M408985200
    Robertson, T. M., Clifford, M. N., Penson, S., Chope, G., & Robertson, M. D. (2015). A
    single serving of caffeinated coffee impairs postprandial glucose metabolism
    in overweight men. The British Journal of Nutrition, 114(8), 1218–1225.
    doi: org/10.1017/S0007114515002640
    Robinson, L. E., Savani, S., Battram, D. S., McLaren, D. H., Sathasivam, P., & Graham,
    T. E. (2004). Caffeine ingestion before an oral glucose tolerance test impairs
    blood glucose management in men with type 2 diabetes. The Journal of
    Nutrition, 134(10),2528–2533.doi: org/10.1093/jn/134.10.2528
    Robinson, L. E., Spafford, C., Graham, T. E., & Smith, G. N. (2009). Acute caffeine
    ingestion and glucose tolerance in women with or without gestational
    diabetes mellitus. Journal of Obstetrics and Gynaecology Canada, 31(4), 304–
    312. doi:org/10.1016/S1701-2163(16)34147-0
    Rowan, C. P., Riddell, M. C., Gledhill, N., & Jamnik, V. K. (2017). Aerobic Exercise
    Training Modalities and Prediabetes Risk Reduction. Medicine and Science in
    Sports and Exercise, 49(3), 403-412. doi: org/10.1249/MSS.0000000000001135
    Rose, A. J., & Richter, E. A. (2005). Skeletal muscle glucose uptake during exercise:
    how is it regulated?. Physiology, 20, 260–270.
    doi: org/10.1152/physiol.00012.2005
    Rynders, C. A., Weltman, J. Y., Jiang, B., Breton, M., Patrie, J., Barrett, E. J., &
    Weltman, A. (2014). Effects of exercise intensity on postprandial improvement
    in glucose disposal and insulin sensitivity in prediabetic adults. The Journal of Clinical Endocrinology and Metabolism, 99(1), 220–228. doi: org/10.1210/jc.2013-
    2687
    Sakamoto, K., & Holman, G. D. (2008). Emerging role for AS160/TBC1D4 and
    TBC1D1 in the regulation of GLUT4 traffic. American Journal of Physiology:
    Endocrinology and Metabolism, 295(1), 29–37.
    doi: org/10.1152/ajpendo.90331.2008
    Schneiker, K. T., Bishop, D., Dawson, B., & Hackett, L. P. (2006). Effects of caffeine on
    prolonged intermittent sprint ability in team sport athletes. Medicine and
    Science in Sports and Exercise, 38(3), 578-585.
    doi: 10.1249/01.mss.0000188449.18968.62
    Sinclair, C. J., & Geiger, J. D. (2000). Caffeine use in sports. A pharmacological
    review. The Journal of Sports Medicine and Physical Fitness, 40(1), 71-79.
    Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018). The effect of acute
    caffeine ingestion on endurance performance: a systematic review and meta-
    analysis. Sports Medicine, 48(8), 1913–1928. doi: org/10.1007/s40279-018-
    0939-8
    Sriwijitkamol, A., Coletta, D. K., Wajcberg, E., Balbontin, G. B., Reyna, S. M.,
    Barrientes, ... Musi, N. (2007). Effect of acute exercise on AMPK signaling in
    skeletal muscle of subjects with type 2 diabetes: a time-course and dose-
    response study. Diabetes, 56(3), 836–848. doi: org/10.2337/db06-1119
    Sung, K. C., Reaven, G. M., & Kim, S. H. (2010). Utility of homeostasis model
    assessment of β-cell function in predicting diabetes in 12,924 healthy Koreans.
    Diabetes Care, 33(1), 200- 202.
    Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J., & Kivimäki, M. (2012).
    Prediabetes: a high-risk state for diabetes development. The Lancet,
    379(9833), 2279-2290. doi: org/10.1016/S0140-6736(12)60283-9
    Tuomilehto, J., Lindström, J., Eriksson, J. G., Valle, T. T., Hämäläinen, H., Ilanne-
    Parikka, P., ... & Salminen, V. (2001). Prevention of type 2 diabetes mellitus by
    changes in lifestyle among subjects with impaired glucose tolerance. New
    England Journal of Medicine, 344(18), 1343-1350.
    Vancea, D. M., Vancea, J. N., Pires, M. I., Reis, M. A., Moura, R. B., & Dib, S. A. (2009).
    Effect of frequency of physical exercise on glycemic control and body c
    composition in type 2 diabetic patients. Arquivos Brasileiros Decardiologia,
    92(1), 23–30. doi: org/10.1590/s0066-782x2009000100005
    van Dam, R. M., & Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes:
    a systematic review. The Journal of the American Medical Association, 294(1),
    97–104. doi: org/10.1001/jama.294.1.97
    Vega-López, S., Ausman, L. M., Griffith, J. L., & Lichtenstein, A. H. (2007).
    Interindividual variability and intra-individual reproducibility of glycemic index
    values for commercial white bread. Diabetes Care, 30(6), 1412–1417.
    doi: org/10.2337/dc06-1598
    Wahren, J., Ekberg, K., Johansson, J., Henriksson, M., Pramanik, A., Johansson, B. L.,
    Rigler, R., & Jörnvall, H. (2000). Role of C-peptide in human physiology.
    American journal of physiology. Endocrinology and Metabolism, 278(5), E759–
    E768. doi: org/10.1152/ajpendo.2000.278.5.E759
    Waring, W. S., Goudsmit, J., Marwick, J., Webb, D. J., & Maxwell, S. R. (2003). Acute
    caffeine intake influences central more than peripheral blood pressure in
    young adults. American Journal of Hypertension, 16(11), 919-924.
    doi: 10.1016/S0895-7061(03)01014-8
    Wedick, N. M., Brennan, A. M., Sun, Q., Hu, F. B., Mantzoros, C. S., & van Dam, R. M.
    (2011). Effects of caffeinated and decaffeinated coffee on biological risk factors
    for type 2 diabetes: a randomized controlled trial. Nutrition Journal, 10(1), 93.
    doi: org/10.1186/1475-2891-10-93
    Whitehead, N., & White, H. (2013). Systematic review of randomised controlled
    trials of the effects of caffeine or caffeinated drinks on blood glucose
    concentrations and insulin sensitivity in people with diabetes mellitus. Journal
    of Human Nutrition and Dietetics, 26(2), 111–125. doi:org/10.1111/jhn.12033
    Whitsett, T. L., Manion, C. V., & Christensen, H. D. (1984). Cardiovascular effects of
    coffee and caffeine. The American Journal of Cardiology, 53(7), 918–922.
    doi: org/10.1016/0002-9149(84)90525-3
    Wing, D. R., & Robinson, D. S. (1968). Clearing-factor lipase in adipose tissue. A
    possible role of adenosine 3',5'-(cyclic)-monophosphate in the regulation of
    its activity. The Biochemical Journal, 109(5), 841–849.
    doi: org/10.1042/bj1090841
    Wojtaszewski, J. F., Nielsen, J. N., & Richter, E. A. (2002). Invited review: effect of
    acute exercise on insulin signaling and action in humans. Journal of Applied
    Physiology,93(1), 384–392. doi: org/10.1152/japplphysiol.00043.2002
    Wright, D. C., Hucker, K. A., Holloszy, J. O., & Han, D. H. (2004). Ca2+ and AMPK
    both mediate stimulation of glucose transport by muscle contractions.
    Diabetes, 53(2), 330–335. doi: org/10.2337/diabetes.53.2.330
    Wright, D. C., & Swan, P. D. (2001). Optimal exercise intensity for individuals with
    impaired glucose tolerance. Diabetes Spectrum, 14(2), 93-97.
    Wu, T., Willett, W. C., Hankinson, S. E., & Giovannucci, E. (2005). Caffeinated coffee,
    decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a
    marker of insulin secretion, in US women. Diabetes Care, 28(6), 1390-1396.
    Yokoyama, H., Emoto, M., Araki, T., Fujiwara, S., Motoyama, K., Morioka, …
    Nishizawa, Y. (2004). Effect of aerobic exercise on plasma adiponectin levels
    and insulin resistance in type 2 diabetes. Diabetes Care, 27(7), 1756–1758.
    doi: org/10.2337/diacare.27.7.1756
    Zaharieva, D. P., & Riddell, M. C. (2013). Caffeine and glucose homeostasis during
    rest and exercise in diabetes mellitus. Applied Physiology, Nutrition, and
    Metabolism 38(8), 813–822. doi: org/10.1139/apnm-2012-0471

    下載圖示
    QR CODE