研究生: |
黃君秦 Huang, Chun-Chin |
---|---|
論文名稱: |
有氧運動前攝取咖啡因對糖尿病前期者運動後血糖調控之影響 Effect of Pre-Exercise Caffeine Ingestion on Post-Exercise Glycemia Regulation in Prediabetes |
指導教授: |
王鶴森
Wang, Ho-Seng |
口試委員: |
吳慧君
Wu, Huey-June 林信甫 Lin, Hsin-Fu 劉宏文 Liu, Hung-Wen 陳勇志 Chen, Yung-Chih 王鶴森 Wang, Ho-Seng |
口試日期: | 2021/06/11 |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 胰島素阻抗 、葡萄糖耐受度 、空腹血糖 |
英文關鍵詞: | insulin resistance, glucose tolerance, fasting plasma glucose |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100495 |
論文種類: | 學術論文 |
相關次數: | 點閱:343 下載:60 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:糖尿病前期為第二類型糖尿病 (type 2 diabetes, T2D) 的高風險族群,透過運動時骨骼肌收縮刺激葡萄糖吸收與維持血糖恆定,是非藥物控制血糖、降低罹患糖尿病的有效方法。然而,咖啡因 (caffeine) 是一項廣泛使用的食品添加物,其不利於血糖控制的效果與運動相反,因此運動前攝取咖啡因對糖尿病前期者運動後血糖調控的影響仍需進一步釐清。目的:探討糖尿病前期者,攝取咖啡因對單次有氧運動後空腹血糖、胰島素、C-胜鍊胰島素 (C-peptide) 及葡萄糖耐受度的影響。方法:招募12名糖尿病前期男性,採雙盲、重複量數及平衡次序設計,所有參與者分別接受咖啡因+運動 (CE, 3mg/kg) 與安慰劑+運動 (PE) 兩種處理,運動形式為30分鐘60% VO2max (maximal oxygen uptake) 強度的跑步運動,並於攝取前、攝取後30分鐘/運動前、運動後立即及運動後120分鐘檢測血糖、胰島素及 C-peptide 濃度,另外,運動後立即進行口服葡萄糖耐受度測驗 (oral glucose tolerance test, OGTT)。結果:血糖在處理與時間因子的交互作用未達顯著 (p > .05),在處理因子主要效果中,CE 處理之平均血糖值顯著高於 PE 處理 (133.87 ± 41.22 vs 127.04 ± 34.17 mg/dl) (p < .05);而胰島素濃度在處理與時間因子的交互作用則達顯著 (p = .010),單純主要效果顯示,CE 處理在運動後30及120分鐘顯著高於PE 處理;另外,CE 處理於 OGTT 測驗中血糖與胰島素濃度變化總曲線下面積 (area under the curve, AUC) 亦顯著高於PE 處理 (p < .05)。而 CE 處理與 PE處理間之 C-peptide 濃度則無顯著差異 (p > .05)。結論:糖尿病前期者有氧運動前攝取咖啡因會引發體內血糖、胰島素濃度提升,產生短暫性胰島素敏感度下降反應,因此,從事有氧運動前攝取咖啡因可能不利於糖尿病前期者運動後的血糖調控。
Background: Individuals with prediabetes increase the risk of developing type 2 diabetes. Exercise is potent stimulator of skeletal muscle glucose uptake and thus good for maintaining glucose homeostasis. That could be a conducive method to improve blood glucose regulation and prevent diabetes without medication intake. In contrast to exercise, the ingestion of caffeine is adverse for blood glucose regulation. Therefore, it is still unknown whether such effects of pre-exercise caffeine ingestion on post-exercise glycemia regulation in prediabetes. Purpose: It aimed to investigate the effects of caffeine on fasting glucose, insulin, C-peptide and glucose tolerance responses after acute aerobic exercise in individuals with prediabetes. Method: The study was a double-blinded, randomized and crossover trials design and twelve men with prediabetes will be recruited. Participants randomly underwent two different trials which were caffeine + exercise (CE, 3 mg/kg) and placebo + exercise (PE) one week apart in a counterbalanced and double-blinded design. Participants performed a 30-min running at 60% VO2max (maximal oxygen uptake) 30 min after caffeine / placebo ingestion in both trials. Blood glucose, insulin, and C-peptide concentrations were measured at pre-ingestion, pre-exercise, immediately after and 120 min after exercise. In addition, participants received OGTT immediately after exercise, with blood glucose and insulin measured every 30 min during the tests. Results: The results showed that no significant trial × time interaction was observed in blood glucose (p > .05). Regarding the main values of trial factor, blood glucose, (133.87 ± 41.22 vs 127.04 ± 34.17 mg/dl) in the CE were higher than PE (p < .05). Then, there were statistically significant differences in insulin between trials and time points (p = .010). The simple main effect indicated that insulin of CE at post-exercise 30 and 120 (OGTT 30, 120) were significant higher than the PE. Moreover, there were statistically significant differences (p < .05) in blood glucose and insulin AUC between trials. That in CE was significant higher than the PE trial. In addition, there were no differences in C-peptide between CE and PE trials at all time points. Conclusion: Acute caffeine ingestion could increase blood glucose and insulin post aerobic exercise, it will have a transient negative impact on insulin sensitivity in prediabetes. Thus, caffeine ingestion, though combined with aerobic exercise, might have a negative impact on glycemic control among prediabetes.
衛生福利部國民健康署 (2018)。三高防治專區。
取自:https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359
衛生福利部國民健康署 (2016)。糖尿病與我。
取自:https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1205
Acheson, K. J., Zahorska-Markiewicz, B., Pittet, P., Anantharaman, K., & Jéquier, E.
(1980). Caffeine and coffee: their influence on metabolic rate and substrate
utilization in normal weight and obese individuals. The American Journal of
Clinical Nutrition, 33(5), 989–997. doi: org/10.1093/ajcn/33.5.989
Alizadeh, A. A., Rahmani-Nia, F., Mohebbi, H., & Zakerkish, M. (2016). Acute aerobic
exercise and plasma levels of orexin A, insulin, glucose, and insulin resis-tance
in males with type 2 diabetes. Journal of Health Sciences, 8(1), e32217.
American Diabetes Association (2020). 2. Classification and diagnosis of diabetes:
standards of medical care in diabetes-2020. Diabetes Care, 43(Suppl 1), S14–
S31. doi: org/10.2337/dc20-S002
American Diabetes Association (2014). Diagnosis and classification of diabetes
mellitus. Diabetes Care, 37(Suppl 1), S81–S90. doi: org/10.2337/dc14-S081
Arslanian, S., Kim, J. Y., Bacha, F., Chan, C., Ismail, H. M., Katz, L. E. L., ... & White, N.
H (2019). the shape of the glucose response curve during an oral glucose
tolerance test: forerunner of heightened glycemic failure rates and accelerated
decline in β-cell function in today. Diabetes care, 42(1), 164–172.
doi: org/10.2337/dc18-1122
Battram, D. S., Arthur, R., Weekes, A., & Graham, T. E. (2006). The glucose
intolerance induced by caffeinated coffee ingestion is less pronounced than
that due to alkaloid caffeine in men. The Journal of Nutrition, 136(5), 1276–
1280. doi: org/10.1093/jn/136.5.1276
Beaudoin, M. S., Allen, B., Mazzetti, G., Sullivan, P. J., & Graham, T. E. (2013). Caffeine
ingestion impairs insulin sensitivity in a dose-dependent manner in both men
and women. Applied Physiology, Nutrition, and Metabolism, 38(2), 140–147.
doi:org/10.1139/apnm-2012-0201
Bello, A. I., Owusu-Boakye, E., Adegoke, B. O., & Adjei, D. N. (2011). Effects of
aerobic exercise on selected physiological parameters and quality of life in
patients with type 2 diabetes mellitus. International Journal of General
Medicine, 4, 723–727. doi: org/10.2147/IJGM.S16717
Bi, Y., Zhu, D., Jing, Y., Hu, Y., Feng, W., Shen, S., ... & Yang, D. (2012). Decreased beta
cell function and insulin sensitivity contributed to increasing fasting glucose in
Chinese. Acta diabetologica, 49(1), 51-58.
Bordenave, S., Brandou, F., Manetta, J., Fédou, C., Mercier, J., & Brun, J. F. (2008).
Effects of acute exercise on insulin sensitivity, glucose effectiveness and
disposition index in type 2 diabetic patients. Diabetes and Metabolism, 34(3),
250–257. doi: org/10.1016/j.diabet.2007.12.008
Boulé, N. G., Weisnagel, S. J., Lakka, T. A., Tremblay, A., Bergman, R. N., Rankinen, T.,
Bouchard, C. (2005). Effects of exercise training on glucose homeostasis: the
HERITAGE Family Study. Diabetes Care, 28(1), 108–114.
doi: org/10.2337/diacare.28.1.108
Borg G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian
Journal of Rehabilitation Medicine, 2(2), 92–98.
Chung, S. T., Ha, J., Onuzuruike, A. U., Kasturi, K., Galvan‐De La Cruz, M., Bingham, B.
A., ... & Sumner, A. E. (2017). Time to glucose peak during an oral glucose
tolerance test identifies prediabetes risk. Clinical endocrinology, 87(5), 484-
491.
Church, T. S., Blair, S. N., Cocreham, S., Johannsen, N., Johnson, W., Kramer, K.,
Earnest, C. P. (2010). Effects of aerobic and resistance training on hemoglobin
A1c levels in patients with type 2 diabetes: a randomized controlled trial.
Journal of the American Medical Association, 304(20), 2253–2262.
doi: org/10.1001/jama.2010.1710
Colberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R.,
Braun, B. (2010). Exercise and type 2 diabetes: the American College of Sports
Medicine and the American Diabetes Association: joint position statement.
Diabetes Care, 33(12), 147–167. doi: org/10.2337/dc10-9990
DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J.,
...Simonson, D. C. (2015). Type 2 diabetes mellitus. Nature Reviews Disease
Primers, 1(1),1-22.
de Lemos, E. T., Oliveira, J., Pinheiro, J. P., & Reis, F. (2012). Regular physical exercise
as a strategy to improve antioxidant and anti-inflammatory status: benefits in
type 2 diabetes mellitus. Oxidative Medicine and Cellular Longevity,
2012,741545. doi: org/10.1155/2012/741545
Dodd, S. L., Herb, R. A., & Powers, S. K. (1993). Caffeine and exercise performance.
Sports Medicine, 15(1), 14-23. doi: 10.2165/00007256-199315010-00003
Egawa, T., Hamada, T., Ma, X., Karaike, K., Kameda, N., Masuda, S., … Hayashi, T.
(2011). Caffeine activates preferentially α1-isoform of 5'AMP-activated protein
kinase in rat skeletal muscle. Acta physiologica, 201(2), 227–238.
doi: org/10.1111/j.1748-1716.2010.02169.x
Erickson, M. L., Zhang, H., Mey, J. T., & Kirwan, J. P. (2020). Exercise training impacts
skeletal muscle clock machinery in prediabetes. Medicine and Science in
Sports and Exercise, 52(10), 2078–2085.
doi: org/10.1249/MSS.0000000000002368
Fain J. N. (2006). Release of interleukins and other inflammatory cytokines by
human adipose tissue is enhanced in obesity and primarily due to the nonfat
cells. Vitamins and Hormones, 74, 443–477. doi: org/10.1016/S0083-
6729(06)74018-3
Gavrieli, A., Fragopoulou, E., Mantzoros, C. S., & Yannakoulia, M. (2013). Gender
and body mass index modify the effect of increasing amounts of caffeinated
coffee on postprandial glucose and insulin concentrations; a randomized,
controlled, clinical trial. Metabolism,62(8), 1099-1106.
doi: org/10.1016/j.metabol.2013.02.003
Greer, F., Hudson, R., Ross, R., & Graham, T. (2001). Caffeine ingestion decreases
glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary
humans.Diabetes, 50(10), 2349–2354. doi: org/10.2337/diabetes.50.10.2349
Goods, P. S. R., Landers, G., & Fulton, S. (2017). Caffeine ingestion improves
repeated freestyle sprints in elite male swimmers. Journal of Sports Science
and Medicine, 16(1),93–98.
Graham, T. E., Sathasivam, P., Rowland, M., Marko, N., Greer, F., & Battram, D.
(2001). Caffeine ingestion elevates plasma insulin response in humans during
an oral glucose tolerance test. Canadian Journal of Physiology and
Pharmacology, 79(7), 559–565.
Graham, T. E., & Spriet, L. L. (1995). Metabolic, catecholamine, and exercise
performance responses to various doses of caffeine. Journal of Applied
Physiology, 78(3), 867-874. doi: 10.1152/jappl.1995.78.3.867
Guo S. (2014). Insulin signaling, resistance, and the metabolic syndrome: insights
frommouse models into disease mechanisms. The Journal of Endocrinology,
220(2),1–23.doi: org/10.1530/JOE-13-0327
Herzig, K. H., Ahola, R., Leppäluoto, J., Jokelainen, J., Jämsä, T., & Keinänen-
Kiukaanniemi, S. (2014). Light physical activity determined by a motion sensor
decreases insulin resistance, improves lipid homeostasis and reduces visceral
fat in high-risk subjects: PreDiabEx study RCT. International Journal of Obesity,
38(8), 1089–1096. doi: org/10.1038/ijo.2013.224
Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, … Hardie, D. G.
(2005). Calmodulin-dependent protein kinase kinase-beta is an alternative
upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2(1), 9–19.
doi: org/10.1016/j.cmet.2005.05.009
Hussey, S. E., McGee, S. L., Garnham, A., McConell, G. K., & Hargreaves, M. (2012).
Exercise increases skeletal muscle GLUT4 gene expression in patients with
type 2 diabetes. Diabetes, Obesity and Metabolism, 14(8), 768–771.
doi: org/10.1111/j.1463-1326.2012.01585.x
International Diabetes Federation. (2019). IDF diabetes atlas (9th ed.). Belgium,
Brussels: International Diabetes Federation
Jamurtas, A. Z., Theocharis, V., Koukoulis, G., Stakias, N., Fatouros, I. G., Kouretas, D.,
& Koutedakis, Y. (2006). The effects of acute exercise on serum adiponectin
and resistin levels and their relation to insulin sensitivity in overweight males. European Journal of Applied Physiology, 97(1), 122. doi: org/10.1007/s00421-006-
0169-x
Jensen, T. E., Rose, A. J., Hellsten, Y., Wojtaszewski, J. F., & Richter, E. A. (2007).
Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in
rodent soleus muscle. American Journal of Physiology-Endocrinology and
Metabolism, 293(1) 286–292. doi: org/10.1152/ajpendo.00693.2006
Jones, A. G., & Hattersley, A. T. (2013). The clinical utility of C-peptide measurement
in the care of patients with diabetes. Diabetic Medicine, 30(7), 803–817.
doi: org/10.1111/dme.12159
Jorge, M. L., de Oliveira, V. N., Resende, N. M., Paraiso, L. F., Calixto, A., Diniz, A. L., …
Geloneze, B. (2011). The effects of aerobic, resistance, and combined exercise
on metabolic control, inflammatory markers, adipocytokines, and muscle
insulin signaling in patients with type 2 diabetes mellitus. Metabolism: Clinical
and Experimental, 60(9), 1244–1252. doi: org/10.1016/j.metabol.2011.01.006
Karstoft, K., Winding, K., Knudsen, S. H., Nielsen, J. S., Thomsen, C., Pedersen, B. K.,
& Solomon, T. P. (2013). The effects of free-living interval-walking training on
glycemic control, body composition, and physical fitness in type 2 diabetic
patients: a randomized, controlled trial. Diabetes Care, 36(2), 228–236.
doi: org/10.2337/dc12-0658
Keijzers, G. B., De Galan, B. E., Tack, C. J., & Smits, P. (2002). Caffeine can decrease i
nsulin sensitivity in humans. Diabetes Care, 25(2), 364–369.
doi: org/10.2337/diacare.25.2.364
Kennedy, J. W., Hirshman, M. F., Gervino, E. V., Ocel, J. V., Forse, R. A., Hoenig, S. J., ...
Horton, E. S. (1999). Acute exercise induces GLUT4 translocation in skeletal
muscle of normal human subjects and subjects with type 2 diabetes. Diabetes,
48(5), 1192–1197. doi: org/10.2337/diabetes.48.5.1192
Knudsen, S. H., Karstoft, K., Pedersen, B. K., van Hall, G., & Solomon, T. P. (2014). The
immediate effects of a single bout of aerobic exercise on oral glucose
tolerance across the glucose tolerance continuum. Physiological Reports, 2(8),
e12114. doi: org/10.14814/phy2.12114
Kolnes, A. J., Ingvaldsen, A., Bolling, A., Stuenaes, J. T., Kreft, M., Zorec, R., … Jensen,
J. (2010). Caffeine and theophylline block insulin-stimulated glucoseuptake
and PKB phosphorylation in rat skeletal muscles. Acta Physiologica, 200(1), 65–
74. doi: org/10.1111/j.1748-1716.2010.02103.x
Krebs, J. D., Parry-Strong, A., Weatherall, M., Carroll, R. W., & Downie, M. (2012). A
cross-over study of the acute effects of espresso coffee on glucose tolerance
and insulin sensitivity in people with type 2 diabetes mellitus. Metabolism,
61(9), 1231–1237. doi: org/10.1016/j.metabol.2012.01.021
Lane, J. D., Barkauskas, C. E., Surwit, R. S., & Feinglos, M. N. (2004). Caffeine impairs
glucose metabolism in type 2 diabetes. Diabetes Care, 27(8), 2047–2048.
doi: org/10.2337/diacare.27.8.2047
Lane, J. D., Feinglos, M. N., & Surwit, R. S. (2008). Caffeine increases ambulatory
glucose and postprandial responses in coffee drinkers with type 2 diabetes.
Diabetes Care, 31(2), 221–222. doi: org/10.2337/dc07-1112
Lane, J. D., Hwang, A. L., Feinglos, M. N., & Surwit, R. S. (2007). Exaggeration of
postprandial hyperglycemia in patients with type 2 diabetes by administration
of caffeine in coffee. Endocrine Practice, 13(3), 239–243.
doi: org/10.4158/EP.13.3.239
Lee, S., Min, J. Y., & Min, K. B. (2020). Caffeine and Caffeine Metabolites in Relation
to Insulin Resistance and Beta Cell Function in US Adults. Nutrients, 12(6),
1783.
Levinger, I., Jerums, G., Stepto, N. K., Parker, L., Serpiello, F. R., McConell, G. K.,
Anderson, M., Hare, D. L., Byrnes, E., Ebeling, P. R., & Seeman, E. (2014). The
effect of acute exercise on undercarboxylated osteocalcin and insulin sensi-
tivity in obese men. Journal of Bone and Mineral Research, 29(12), 2571–2576.
doi: org/10.1002/jbmr.2285
Mahmud, A., & Feely, J. (2001). Acute effect of caffeine on arterial stiffness and
aortic pressure waveform. Hypertension, 38(2), 227-231.
doi:10.1161/01.HYP.38.2.227
Malin, S. K., Gerber, R., Chipkin, S. R., & Braun, B. (2012). Independent and com-
bined effects of exercise training and metformin on insulin sensitivity in
individuals with prediabetes. Diabetes Care, 35(1), 131–136.
doi: org/10.2337/dc11-0925
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner,
R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell
function from fasting plasma glucose and insulin concentrations in man.
Diabetologia, 28(7), 412-419.
McClean, C. M., McNeilly, A. M., Trinick, T. R., Murphy, M. H., Duly, E., McLaughlin, J.,
McEneny, J., Burke, G., & Davison, G. W. (2009). Acute exercise and impaired
glucose tolerance in obese humans. Journal of Clinical Lipidology, 3(4), 262–
268. doi: org/10.1016/j.jacl.2009.07.001
McConnell T. R. (1988). Practical considerations in the testing of VO2max in
runners. Sports Medicine, 5(1), 57–68. doi: org/10.2165/00007256-198805010-
00005
Musi, N., Fujii, N., Hirshman, M. F., Ekberg, I., Fröberg, S., Ljungqvist, O., …
Goodyear, L. J. (2001). AMP-activated protein kinase (AMPK) is activated in
muscle of subjects with type 2 diabetes during exercise. Diabetes, 50(5), 921–
927. doi: org/10.2337/diabetes.50.5.921
Richardson, D. K., Kashyap, S., Bajaj, M., Cusi, K., Mandarino, S. J., Finlayson, …
Mandarino, L. J. (2005). Lipid infusion decreases the expression of nuclear
encoded mitochondrial genes and increases the expression of extracellular
matrix genes in human skeletal muscle. The Journal of Biological Chemistry,
280(11), 10290–10297.doi: org/10.1074/jbc.M408985200
Robertson, T. M., Clifford, M. N., Penson, S., Chope, G., & Robertson, M. D. (2015). A
single serving of caffeinated coffee impairs postprandial glucose metabolism
in overweight men. The British Journal of Nutrition, 114(8), 1218–1225.
doi: org/10.1017/S0007114515002640
Robinson, L. E., Savani, S., Battram, D. S., McLaren, D. H., Sathasivam, P., & Graham,
T. E. (2004). Caffeine ingestion before an oral glucose tolerance test impairs
blood glucose management in men with type 2 diabetes. The Journal of
Nutrition, 134(10),2528–2533.doi: org/10.1093/jn/134.10.2528
Robinson, L. E., Spafford, C., Graham, T. E., & Smith, G. N. (2009). Acute caffeine
ingestion and glucose tolerance in women with or without gestational
diabetes mellitus. Journal of Obstetrics and Gynaecology Canada, 31(4), 304–
312. doi:org/10.1016/S1701-2163(16)34147-0
Rowan, C. P., Riddell, M. C., Gledhill, N., & Jamnik, V. K. (2017). Aerobic Exercise
Training Modalities and Prediabetes Risk Reduction. Medicine and Science in
Sports and Exercise, 49(3), 403-412. doi: org/10.1249/MSS.0000000000001135
Rose, A. J., & Richter, E. A. (2005). Skeletal muscle glucose uptake during exercise:
how is it regulated?. Physiology, 20, 260–270.
doi: org/10.1152/physiol.00012.2005
Rynders, C. A., Weltman, J. Y., Jiang, B., Breton, M., Patrie, J., Barrett, E. J., &
Weltman, A. (2014). Effects of exercise intensity on postprandial improvement
in glucose disposal and insulin sensitivity in prediabetic adults. The Journal of Clinical Endocrinology and Metabolism, 99(1), 220–228. doi: org/10.1210/jc.2013-
2687
Sakamoto, K., & Holman, G. D. (2008). Emerging role for AS160/TBC1D4 and
TBC1D1 in the regulation of GLUT4 traffic. American Journal of Physiology:
Endocrinology and Metabolism, 295(1), 29–37.
doi: org/10.1152/ajpendo.90331.2008
Schneiker, K. T., Bishop, D., Dawson, B., & Hackett, L. P. (2006). Effects of caffeine on
prolonged intermittent sprint ability in team sport athletes. Medicine and
Science in Sports and Exercise, 38(3), 578-585.
doi: 10.1249/01.mss.0000188449.18968.62
Sinclair, C. J., & Geiger, J. D. (2000). Caffeine use in sports. A pharmacological
review. The Journal of Sports Medicine and Physical Fitness, 40(1), 71-79.
Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018). The effect of acute
caffeine ingestion on endurance performance: a systematic review and meta-
analysis. Sports Medicine, 48(8), 1913–1928. doi: org/10.1007/s40279-018-
0939-8
Sriwijitkamol, A., Coletta, D. K., Wajcberg, E., Balbontin, G. B., Reyna, S. M.,
Barrientes, ... Musi, N. (2007). Effect of acute exercise on AMPK signaling in
skeletal muscle of subjects with type 2 diabetes: a time-course and dose-
response study. Diabetes, 56(3), 836–848. doi: org/10.2337/db06-1119
Sung, K. C., Reaven, G. M., & Kim, S. H. (2010). Utility of homeostasis model
assessment of β-cell function in predicting diabetes in 12,924 healthy Koreans.
Diabetes Care, 33(1), 200- 202.
Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J., & Kivimäki, M. (2012).
Prediabetes: a high-risk state for diabetes development. The Lancet,
379(9833), 2279-2290. doi: org/10.1016/S0140-6736(12)60283-9
Tuomilehto, J., Lindström, J., Eriksson, J. G., Valle, T. T., Hämäläinen, H., Ilanne-
Parikka, P., ... & Salminen, V. (2001). Prevention of type 2 diabetes mellitus by
changes in lifestyle among subjects with impaired glucose tolerance. New
England Journal of Medicine, 344(18), 1343-1350.
Vancea, D. M., Vancea, J. N., Pires, M. I., Reis, M. A., Moura, R. B., & Dib, S. A. (2009).
Effect of frequency of physical exercise on glycemic control and body c
composition in type 2 diabetic patients. Arquivos Brasileiros Decardiologia,
92(1), 23–30. doi: org/10.1590/s0066-782x2009000100005
van Dam, R. M., & Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes:
a systematic review. The Journal of the American Medical Association, 294(1),
97–104. doi: org/10.1001/jama.294.1.97
Vega-López, S., Ausman, L. M., Griffith, J. L., & Lichtenstein, A. H. (2007).
Interindividual variability and intra-individual reproducibility of glycemic index
values for commercial white bread. Diabetes Care, 30(6), 1412–1417.
doi: org/10.2337/dc06-1598
Wahren, J., Ekberg, K., Johansson, J., Henriksson, M., Pramanik, A., Johansson, B. L.,
Rigler, R., & Jörnvall, H. (2000). Role of C-peptide in human physiology.
American journal of physiology. Endocrinology and Metabolism, 278(5), E759–
E768. doi: org/10.1152/ajpendo.2000.278.5.E759
Waring, W. S., Goudsmit, J., Marwick, J., Webb, D. J., & Maxwell, S. R. (2003). Acute
caffeine intake influences central more than peripheral blood pressure in
young adults. American Journal of Hypertension, 16(11), 919-924.
doi: 10.1016/S0895-7061(03)01014-8
Wedick, N. M., Brennan, A. M., Sun, Q., Hu, F. B., Mantzoros, C. S., & van Dam, R. M.
(2011). Effects of caffeinated and decaffeinated coffee on biological risk factors
for type 2 diabetes: a randomized controlled trial. Nutrition Journal, 10(1), 93.
doi: org/10.1186/1475-2891-10-93
Whitehead, N., & White, H. (2013). Systematic review of randomised controlled
trials of the effects of caffeine or caffeinated drinks on blood glucose
concentrations and insulin sensitivity in people with diabetes mellitus. Journal
of Human Nutrition and Dietetics, 26(2), 111–125. doi:org/10.1111/jhn.12033
Whitsett, T. L., Manion, C. V., & Christensen, H. D. (1984). Cardiovascular effects of
coffee and caffeine. The American Journal of Cardiology, 53(7), 918–922.
doi: org/10.1016/0002-9149(84)90525-3
Wing, D. R., & Robinson, D. S. (1968). Clearing-factor lipase in adipose tissue. A
possible role of adenosine 3',5'-(cyclic)-monophosphate in the regulation of
its activity. The Biochemical Journal, 109(5), 841–849.
doi: org/10.1042/bj1090841
Wojtaszewski, J. F., Nielsen, J. N., & Richter, E. A. (2002). Invited review: effect of
acute exercise on insulin signaling and action in humans. Journal of Applied
Physiology,93(1), 384–392. doi: org/10.1152/japplphysiol.00043.2002
Wright, D. C., Hucker, K. A., Holloszy, J. O., & Han, D. H. (2004). Ca2+ and AMPK
both mediate stimulation of glucose transport by muscle contractions.
Diabetes, 53(2), 330–335. doi: org/10.2337/diabetes.53.2.330
Wright, D. C., & Swan, P. D. (2001). Optimal exercise intensity for individuals with
impaired glucose tolerance. Diabetes Spectrum, 14(2), 93-97.
Wu, T., Willett, W. C., Hankinson, S. E., & Giovannucci, E. (2005). Caffeinated coffee,
decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a
marker of insulin secretion, in US women. Diabetes Care, 28(6), 1390-1396.
Yokoyama, H., Emoto, M., Araki, T., Fujiwara, S., Motoyama, K., Morioka, …
Nishizawa, Y. (2004). Effect of aerobic exercise on plasma adiponectin levels
and insulin resistance in type 2 diabetes. Diabetes Care, 27(7), 1756–1758.
doi: org/10.2337/diacare.27.7.1756
Zaharieva, D. P., & Riddell, M. C. (2013). Caffeine and glucose homeostasis during
rest and exercise in diabetes mellitus. Applied Physiology, Nutrition, and
Metabolism 38(8), 813–822. doi: org/10.1139/apnm-2012-0471