研究生: |
林子晶 Lin, Zih-Jing |
---|---|
論文名稱: |
奈米碳管光磁性研究與探討 Photomagnetic Carbon Nanotubes: Preparation and Analysis |
指導教授: |
王忠茂
Wang, Chong-Mou |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 三聯吡啶釕錯合物 、5-胺基菲羅啉 、含釕錯合物 、多層奈米碳管 、含釕奈米碳管 、磁性奈米碳管 、光誘發磁性 、藍光雷射 、原子力顯微術 |
英文關鍵詞: | [Ru(bpy)3]2+, NH2-phen, [Ru(bpy)2(NH2-phen)]2+, MWCNT, Ru@CNT, magnetic carbon nanotubes, photo-induced magnetism, blue laser, AFM |
論文種類: | 學術論文 |
相關次數: | 點閱:291 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於三聯吡啶釕錯合物(Tris(2,2'-bipyridine) ruthenium(Ⅱ),簡稱[Ru(bpy)3]2+)是一具電化學發光特性的光敏劑,可在可見光照射下進行metal-to-ligand charge transfer(簡稱MLCT),具光電應用潛力,本實驗遂製備[Ru(bpy)3]2+的5-胺基菲羅啉(5-amino-1,10-
phenanthroline,簡稱NH2-phen)衍生物:Bis(2,2'-bipyridine)-5-amino-
1,10-phenanthroline ruthenium(Ⅱ)(簡稱[Ru(bpy)2(NH2-phen)]2+),再利用化學偶氮修飾法將之修飾在多層奈米碳管表面,得到含釕錯合物奈米碳管,簡稱為Ru@CNT,以進行光磁轉換探討。
實驗結果顯示:在合成條件為13.5 mg [Ru(bpy)2(NH2-phen)]2+、5 mg CNT、0.8 mg NaNO2、20 mg AA與10 mL的0.1 M HCl,反應溫度為80℃,反應時間24 h,能合成出表面修飾較為均勻的Ru@CNT。若以VSM、AC susceptibility分析法、磁性模組與導電模組AFM進行分析,我們發現Ru@CNT受到藍光雷射(ex: 473 nm)照射時,表面上的釕吸附微粒會產生電荷分離,電子組態會由單重態轉變成參重態,而在室溫下產生磁性。若進一步分析其電子躍遷能位,我們推論Ru@CNT受光激發時,電子轉移障礙約為0.5 eV。由於此時MFM所測得的相位差明顯增加,間接證實其光磁性來自電荷分離與電荷轉移,顯示Ru@CNT具有光電與光磁轉換應用潛力。
Bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (Ru(bpy)2(NH2-phen)2+) is an MLCT complex, possessing a long-lived triplet state in water and a structure analogous to Ru(bpy)32+. When Ru(bpy)2(NH2-phen)2+ was subjected to diazotization in the presence of carbon nanotubes (CNTs), it formed nanodots on the CNTs, rendering the resulting tubes (Ru@CNT) capable of transducing photo stimuli (473 nm) into electricity and magnetism at ambient conditions. The increased functionality was highly reproducible, confirmed by the conductive-mode AFM, vibrating sample magnetometry (VSM), and AC susceptibility analysis. Local magnetism probing of the Ru@CNT with the magnetic-mode AFM techniques (MFM) indicated that the magnetism was originating from the photoexcited nanodots. The resulting phase shift behaved as a function of the luminous power and the voltage (Vb) of the electrical bias applied to the Ru@CNT. The Vb dependence deviated from the expected quadratic correlation, suggesting that the formation of the triplet state at the nanodots could be a limiting factor for the photomagnetism. Nevertheless, the Ru@CNT tubes showed mobility toward an external magnet when exposed to visible light on water. The Ru@CNT is thus shown as a multifunctional material that might be useful in spintronics.
[1] S. Iijima, Nature 1991, 354, 56.
[2] J. M. Schnorr, T. M. Swager, Chem. Mater. 2011, 23, 646.
[3] K. Balasubramanian, M. Burghard, Small 2005, 1, 180.
[4] C. A. Furtado, U. J. Kim, H. R. Gutierrez, L. Pan, E. C. Dickey, P. C. Eklund, J. Am. Chem. Soc. 2004, 126, 6095.
[5] G. C. Zhao, L. Zhang, X. W. Wei, Z. S. Yang, Electrochem. Commun. 2003, 5, 825.
[6] M. Zdrojek, W. Gebicki, C. Jastrzebski, T. Melin, A. Huczko, Solide State Phenomena 2004, 99, 265.
[7] A. Vlandas, T. Kurkina, A. Ahmad, K. Kern, K. Balasubramanian, Anal. Chem. 2010, 82, 6090.
[8] L. Kong, J. Wang, T. Luo, F. Meng, X. Chen, M. Li, J. Liu, Analyst 2010, 135, 368.
[9] C. Baleiz#westeur036#o, B. Gigante, H. Garcia, A. Corma, J. Catal. 2004,221, 77.
[10] Z. Yao, N. Braidy, G. A. Botton, A. Adronov, J. Am. Chem. Soc. 2003, 125, 16015.
[11] M. Knez, M. Sumser, A. M. Bittner, C. Wege, H. Jeske, S. Kooi, M. Burghard, K. Kern, J. Electroanal. Chem. 2002, 522, 70.
[12] S. Heinze, J. Tersoff, P. Avouris, Appl. Phys. Lett. 2003, 83, 5038.
[13] C. Staii, A. T. J. Johnson, M. Chen, A. Gelperin, Nano Lett. 2005, 5, 1774.
[14] C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Chem. Commun. 2005, 829.
[15] T. A. Silva, H. Zanin, F. C. Vicentini, E. J. Corat, O. F. Filho, Analyst 2014, 139, 2832.
[16] 金重勳編,中華民國磁性技術學會出版,磁性技術手冊
[17] 張喣,李學養,聯經出版,磁性物理學
[18] J. F. Scott, Science 2007, 315, 954.
[19] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, E. L. Vander, N. R. Muller, Chem. Rev. 2008, 108, 2064.
[20] Y. Yin, D. V. Talapinb, Chem. Soc. Rev. 2013, 42, 2484.
[21] X. Liu, I. Marangon, G. Melinte, C. Wilhelm, C. M. Moyon, B. P. Pichon, O. Ersen, K. Aubertin, W. Baaziz, C. P. Huu, S. B. Colin, A. Bianco, F. Gazeau, D. B#westeur042#gin, ACS Nano 2014, 8, 11290.
[22] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. Appl. Phys. 2003, 36, R167.
[23] L. H. Reddy, J. L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 2012, 112, 5818.
[24] I. T. Kim, A. Magasinski, K. Jacob, G. Yushin, R. Tannenbaum, Carbon 2013, 52, 56.
[25] J. Y. Son, I. Jung, Y. H. Shin, J. Phys. Chem. C 2013, 117, 12890.
[26] G. E. Grechnev, V. A. Desnenko, A. V. Fedorchenko, A. S. Panfilov, Y. I. Prylutskyy, M. I. Grybova, L. Y. Matzui, U. Ritter, P. Scharff, Y. A. Kolesnichenko, Carbon 2011, 49, 4443.
[27] R. O. Monllau, F. X. M. Pascual, E. Baldrich, Sensors and Actuators B 2013, 185, 685.
[28] T. W. Odom, J. L. Huang, C. L. Cheung, C. M. Lieber, Science 2000, 290, 1549.
[29] F. H. Burstall, J. Chem. Soc. 1936, 173.
[30] N. E. Tokel, A. J. Bard, J. Am. Chem. Soc. 1972, 94, 2862.
[31] R. Y. Lai, M. Chiba, N. Kitamura, A. J. Bard, Anal. Chem. 2002, 74, 551.
[32] M. Zhou, G. P. Robertson, J. Roovers, Inorg. Chem. 2005, 44, 8317.
[33] M. Dickerson, Y. Sun, B. Howerton, E. C. Glazer, Inorg. Chem. 2014, 53, 10370.
[34] H. Qi, M. Li, M. Dong, S. Ruan, Q. Gao, C. Zhang, Anal. Chem. 2014, 86, 1372.
[35] M. M. Richter, A. J. Bard, W. Kim, R. H. Schmehl, Anal. Chem. 1998, 70(2), 310.
[36] P. Bertoncello, E. T. Kefalas, Z. Pikramenou, P. R. Unwin, R. J. Forster, J. Phys. Chem. B 2006, 110, 10063.
[37] G. J. Barbante, P. S. Francis, C. F. Hogan, P. R. Kheradmand, D. J. D. Wilson, P. J. Barnard, Inorg. Chem. 2013, 52, 7448.
[38] H. J. Nie, J. Yao, Y. W. Zhong, J. Org. Chem. 2011, 76, 4771.
[39] S. Sun, Y. Yang, F. Liu, Y. Pang, J. Fan, L. Sun, X. Peng, Anal. Chem. 2009, 81, 10227.
[40] M. J. Li, Z. Chem, V. W. W. Yam, Y. Zu, ACS Nano 2008, 2, 905.
[41] C. D. Ellis, L. D. Margerum, R. W. Murray, T. J. Meyer, Inorg. Chem. 1983, 22, 1283.
[42] D. J. E. Piper, G. J. Barbante, N. Brack, P. J. Pigram, C. F. Hogan, Langmuir 2011, 27, 474.
[43] B. Reuillard, A. L. Goff, S. Cosnier, Anal. Chem. 2014, 86, 4409.
[44] 梁秉怡,國立臺灣師範大學化學研究所碩士論文,化學修飾電極之光電性質研究,2002
[45] 張珮玟,國立臺灣師範大學化學研究所碩士論文,含釕配位化合物-黏土修飾電極之研究,2003
[46] 韓岳樺,國立臺灣師範大學化學研究所碩士論文,釕胺基菲羅啉衍生物之製備和應用,2012
[47] 張庭瑜,國立臺灣師範大學化學研究所碩士論文,含釕胺基取代聯吡啶釕錯合物修飾奈米碳管之研究與應用,2013
[48] 林煒舜,國立臺灣師範大學化學研究所碩士論文,羫基喹啉鋁錯合物組合反應及5-胺基菲羅啉聯吡啶釕錯合物光電轉換分析,2014
[49] G. Binning, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930.
[50] M. Gavagnin, H. D. Wanzenboeck, S. Wachter, M. M. Shawrav, A. Persson, K. Gunnarsson, P. Svedlindh, M. S. Pollach, E. Bertagnolli, ACS Appl. Mater. Interfaces 2014, 6, 20254.
[51] J. H. Hoh, A. Engel, Langmuir 1993, 9, 3310.
[52] R. F. Tabor, H. Lockie, D. Mair, R. Manica, D. Y. C. Chan, F. Grieser, R. R. Dagastine, J. Phys. Chem. Lett. 2011, 2, 961.
[53] N. Hoepker, S. Lekkala, R. F. Loring, J. A. Marohn, J. Phys. Chem. B 2011, 115, 14493.
[54] Q. Li, S. Jesse, A. Tselev, L. Collins, P. Yu, I. Kravchenko, S. V. Kalinin, N. Balke, ACS Nano 2015, 9, 1848.
[55] D. J. R. Appleby, N. K. Ponon, K. S. K. Kwa, B. Zou, P. K. Petrov, T. Wang, N. M. Alford, A. O. Neill, Nano Lett. 2014, 14, 3864.
[56] D. E. Ferrer, M. A. Edwards, L. Fumagalli, A. Ju#westeur034#rez, G. Gomila, ACS Nano 2014, 8, 9843.
[57] B. C. Bunker, B. I. Kim, J. E. Houston, R. Rosario, A. A. Garcia, M. Hayes, D. Gust, S. T. Picraux, Nano Lett. 2003, 3, 1723.
[58] D. J. Hardy, Z. Wu, J. C. Phillips, J. E. Stone, R. D. Skeel, K. Schulten, J. Chem. Theory Comput. 2015, 11, 766.
[59] S. Block, G. Gl#westeur055#ckl, W. Weitschies, C. A. Helm, Nano Lett. 2011, 11, 3587.
[60] H. Li, X. Qi, J. Wu, Z. Zeng, J. Wei, H. Zhang, ACS Nano 2013, 7, 2842.
[61] R. N. Patel, A. T. Heitsch, C. Hyun, D. M. Smilgies, A. d. Lozanne, Y. L. Loo, B. A. Korgel, ACS Appl. Mater. Interfaces 2009, 1, 1339.
[62] H. Cui, S. V. Kalinin, X. Yang, D. H. Lowndes, Nano Lett. 2004, 4, 2157.
[63] S. Xu, G. Poirier, N. Yao, Nano Lett. 2012, 12, 2238.
[64] J. Varghese, T. Ghoshal, N. Deepak, C. O. Regan, R. W. Whatmore, M. A. Morris, J. D. Holmers, Chem. Mater. 2013, 25, 1458.
[65] C. Halperin, S. Mutchnik, A. Agronin, M. Molotskii, P. Urenski, M. Salai, G. Rosenman, Nano Lett. 2004, 4, 1253.
[66] Z. Zhou, H. Tang, H. A. Sodano, ACS Appl. Mater. Interfaces 2013, 5, 11894.
[67] 張育甄,國立臺灣師範大學化學研究所碩士論文,敏光劑吸附沸石微粒之光電研究,2001
[68] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon. 2008, 46, 833.
[69] L. Liu, Y. Qin, Z. X. Guo, D. Zhu, Carbon 2003, 41, 331.
[70] 蔡毓楨、薛富盛、呂福興、吳宗明,教育部中南區奈米科技K-12 教育發展中心系列叢書,原子力顯微鏡實作訓練教材,2007
[71] W. T. Chuang, C. H. Wang, C. M. Wang, J. Electroanal. Chem. 2002, 521, 175.
[72] C. Lu, A. W. Czanderna, Methods and Phenomena 1984, 7, 1.
[73] E. Coulon, J. Pinson, Langmuir 2001, 17, 7102.
[74] A. Roglans, A. P. Quintana, M. M. Manas, Chem. Rev. 2006, 106, 4622.
[75] M. Bouriga, M. M. Chehimi, C. Combellas, P. Decorse, F. Kanoufi, A. Deronzier, J. Pinson, Chem. Mater. 2013, 25, 90.
[76] P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, S. Verneyre, Chem. Mater. 2007, 19, 4570.
[77] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 2008, 46, 833.
[78] W. Baaziz, S. B. Colin, B. P. Pichon, I. Florea, O. Ersen, S. Zafeiratos, R. Barbosa, D. Begin, C. P. Huu, Chem. Mater. 2012, 24, 1549.
[79] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, R. Saito, Carbon 2002, 40, 2043.
[80] A. M. Rao, E. Ritcher, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science 1997, 275, 187.
[81] J. M. Benoit, J. P. Buisson, O. Chauvet, C. Godon, S. Lefrant, Phys. Rev. B 2002, 66, 3407.
[82] H. Jantoljak, J. P. Salvetat, L. Forro, C. Thomsen, Appl. Phys. A: Mater. Sci. Process. 1998, 67, 113.
[83] H. Kataura, Y. Achiba, X. Zhao, J. Robertson, Mater. Res. Soc. Symp. Proc. 2000, 593, 113.
[84] V. O. Khavrus, E. M. M. Ibrahim, A. Bachmatiuk, M. H. R#westeur061#mmeli, A. U. B. Wolter, S. Hampel, A. Leonhardt, J. Nanopart. Res. 2012, 14, 914.
[85] S. Mohapatra, R. K. Kumar, T. K. Maji, Chem. Phys. Lett. 2011, 508, 76.
[86] W. Luo, S. J. Pennycook, S. T. Pantelides, Nano Lett. 2008, 8, 661.
[87] Y. Sakamoto, Y. Oba, H. Maki, M. Suda, Y. Einaga, Y. Sato, M. Mizumaki, N. Kawamura, M. Suzuki, Phys. Rev. B 2011, 83, 104420.
[88] Y. T. Chen, S. M. Xie, H. Y. Jheng, J. Appl. Phys. 2013, 113, 17B303.