研究生: |
姚壬茨 Yao, Ren-Ci |
---|---|
論文名稱: |
溫度與氧壓對氧化鋅摻雜釓的光學性質與磁性影響 Effect of Temperature and Oxygen Pressure on Optical Properties and Magnetic Properties of Zinc Oxide Doped Gadolinium |
指導教授: | 駱芳鈺 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 氧化鋅 、釓 、脈衝雷射蒸鍍 、鍍膜氧壓 、基板溫度 |
英文關鍵詞: | Zin oxide, gadolinium, pulsed-laser deposition, oxygen partial pressure for deposition, substrate temperature |
DOI URL: | http://doi.org/10.6345/NTNU201900940 |
論文種類: | 學術論文 |
相關次數: | 點閱:189 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用脈衝雷射蒸鍍法(PLD)在c方向的單晶藍寶石基板上製備150 nm厚的氧化鋅(ZnO)與氧化釓鋅(ZnGdO),並探討薄膜鍍膜速率、薄膜的結構特性、光學性質及磁性的和基板溫度、鍍膜氧壓關係。薄膜的製備條件PLD單位面積雷射能量為2.5 J/cm2,鍍膜氧壓分別為3×10-1 mbar與3×10-2 mbar,釓的摻雜比例為5 at.%,鍍膜溫度為室溫到750 ℃。
X光繞射及拉曼散射光譜顯示薄膜並沒有雜質或其他晶相產生,表示釓成功的取代氧化鋅。鍍膜溫度在750℃時,薄膜結晶品質最好,其中氧化鋅薄膜的最佳鍍膜氧壓為3×10-1 mbar,氧化釓鋅薄膜的最佳鍍膜氧壓則為3×10-2mbar。在最佳鍍膜條件下,氧化鋅和氧化釓鋅薄膜的晶粒大小分別為31.82 nm、16.87 nm;拉曼光譜也出現E2L-B1H特徵峰。
螢光光譜顯示氧化鋅與氧化釓鋅薄膜皆可觀察到近能隙發光,而氧化鋅薄膜主要來自鋅間隙、鋅空闕的缺陷發光;氧化釓鋅主要來自鋅間隙、鋅空缺和氧空缺的缺陷發光。超導量子干涉磁量儀測量結果顯示氧化鋅薄膜與氧化釓鋅皆為順磁性,飽和磁矩隨著鍍膜溫度下降而上升,有摻雜釓的氧化鋅的磁矩較氧化鋅高。飽和磁矩的來源除了摻雜的釓原子,還包含薄膜中的缺陷,但這些缺陷並沒有辦法增強耦合交互作用,因此雖然摻雜5 %的釓仍為順磁性,沒有變成鐵磁性。
In this paper, 150 nm thick zin oxide (ZnO) and gadolinium (Gd) doped ZnO (ZnGdO) thin films were prepared by pulse-laser deposition (PLD). For the thin films growth, the laser energy fluence is 2.5 s/cm2, the growth temperatures range between room temperature and 750 ℃, and the oxygen partial pressure are 3×10-1 and 3×10-2 mbar, respectively. The relationship between films deposition rate, structural, optical, and magnetic properties of the thin films versus the growth temperature and oxygen partial pressure were explored.
X-ray diffraction (XRD) and Raman-scattering spectra showed Gd incorporation into ZnO without secondary phase. The best growth temperature is 750 ℃, where the best oxygen partial pressures for ZnO and ZnGdO are 3×10-1 and 3×10-2 mbar, respectively. Under the best growth conditions, the grain sizes for ZnO and ZnGdO are 31.82 nm and 16.87 nm, respectively; the E2L-B1H characteristic peak appears in Raman-scattering spectra.
Near band edge (NBE) emission peaks as well as emission peaks related to zinc vacancy, zinc interstitial are observed in photolumiscence (PL) spectra for both ZnO and ZnGdO thin films. In addition, oxygen vacancy emission peaks are identified for ZnGdO thin films.
Magnetic investigations with a superconducting quantum interference device (SQUID) magnetometer showed that both ZnO and ZnGdO thin films are paramagnetic without long-range ordering. The saturation moment increases as the growth temperature decreases. Both Gd dopant and defects contribute to total magnetic moment, but the defects do not involve in magnetic interaction – therefore, the thin films are paramagnetic.
[1] 胡裕民(2004)。物理雙月刊。26卷4期,587-599頁。
[2] 駱芳鈺(2009)。台灣磁性技術協會會訊。50期
[3] Dr. Klaus Ellmer, Dr. Andreas Klein and Professor Dr. Bernd Rech (2008). Transparent Conductive Zinc Oxide.
[4] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
[5]簡志峰(2011)。脈衝雷射蒸鍍法蒸鍍氧化鋅及氧化釓鋅薄膜(碩士論文)。國立台灣師範大學。
[6]魏嘉瑩(2009)。釓摻雜氧化鋅鋁透明導電薄膜特性分析(碩士論文)。國立中央大學。
[7] Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nded.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
[8]Stephen Blundell (2001). Magnetism in Condensed Matter.
[9]Liu, Y.-Z., Ying, M. J., Du, X. L., Jia, J. F., Xue, Q. K., Han, X. D., & Zhang, Z. (2006). The 30° rotation domains in wurtzite ZnO films. Journal of Crystal Growth, 290(2), 631–636.
[10]陳銘堯,物理雙月刊(十五卷五期)(1993)
[11] Robert Eason(2007).PULSED LASER DEPOSITION OF THIN FILMS. WILEY.
[12]劉源俊。檢自:http://www.scu.edu.tw/physics/teacher/ytliu/book.htm
[13] David J. Griffiths(2008). Introduction to Electrodynamics(third edition)
[14] B. D. Cullity and S. R. Stock(2001). Elements of X-Ray Diffraction(third edition)
[15] Raymond A. Serway, Clement J. Moses and Curt A. Moyer(2005). Modern
Physics(third edition)
[16] 張育唐、陳藹然(2011年12月23)。科學Online。檢自:
http://highscope.ch.ntu.edu.tw/wordpress/?p=41141
[17]林麗娟(1994年2月)。X光繞射原理及其應用。工業材料86期。100-109。
[18] M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, and
W.Ahmed, Applied Surface Science ,274,273–281(2013)
[19]檢自:https://www.renishaw.com/en/photoluminescence-explained--25809
[20]蔡逸帆,氧化鋅鎂合金之電子-聲子交互作用研究(2013)
[21] J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang and K.V. Rao, Prog. Mater. Sci. 58, 874 (2013).
[22] Magnus Willander, Omer Nur, Jamil Rana Sadaf, Muhammad Israr Qadir, Saima Zaman, Ahmed Zainelabdin, Nargis Bano and Ijaz Hussain, Materials. 3, 2643 (2010).
[23] Bixia Lin, Zhuxi Fu, and Yunbo Jia, Appl. Phys. Lett. 79, 943 (2001).
[24]張延會、吳良平、孫真榮(2016)。化學教學,第四期。
[25]謝宜暾(2006)。氧化鋅摻雜銅及鎳之物性研究(碩士論文)。國立臺南大學。
[26]丁一介(2014)。脈衝雷射蒸鍍法製備氧化鏑鋅薄膜的探討:結構、光學與磁性研究(碩士論文)。國立台灣師範大學。
[27] Josephson, B. D., "Possible new effects in superconductive tunnelling," Physics
Letters 1, 251 (1962)
[28]李聖尉(2011)。科學Online。檢自:http://highscope.ch.ntu.edu.tw/wordpress/?p=22512
[29]杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯。磁性基本特性及磁性材料應用。國立台灣大學化學系。
[30]檢自:https://zhuanlan.zhihu.com/p/25912264
[31]李聖尉(2011)。科學Online。
檢自:http://highscope.ch.ntu.edu.tw/wordpress/?p=22506
[32] D. K. Cheng(1989)Field and Wave Electromagnetics,3rd ed,Addison-Wesley,New York
[33] 謝宗鈞(2015)。氧化釓鋅薄膜在不同鍍膜氧壓下的結構、光學與磁性(碩士論文)。國立台灣師範大學。
[34] A. A. Dakhel and M. El-Hilo, J. Appl. Phys. 107, 123905 (2010).
[35] A. H. Shah1, E. Manikandan1, M. Basheer Ahmed1 and V. Ganesan, Journal of Nanomedicine & Nanotechnology (2013)