研究生: |
陳友華 Chen, Yu-Hua |
---|---|
論文名稱: |
石墨烯與高熵合金薄膜於表面電漿高反射結構及生物感測之應用 High reflection structures and biosensing of graphene and high-entropy alloys thin film |
指導教授: |
楊承山
Yang, Chan-Shan 謝卓帆 Hsieh, Cho-Fan |
口試委員: |
楊承山
Yang, Chan-Shan 謝卓帆 Hsieh, Cho-Fan 許文東 Hsu, Wen-Dung 施權峰 Shih, Chuan-Feng |
口試日期: | 2022/09/21 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 表面電漿 、高熵合金 、高對比度光柵 、兆赫波 、石墨烯 、生醫感測器 、有限元素法 |
英文關鍵詞: | Surface plasmons, high-entropy alloys, high-contrast gratings, Terahertz waves, graphene, biomedical sensors, finite element methods |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201790 |
論文種類: | 學術論文 |
相關次數: | 點閱:214 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” nature, 424(6950), 824-830, 2003.
[2] Li, Ming, Scott K. Cushing, and Nianqiang Wu. "Plasmon-enhanced optical sensors: a review." Analyst 140.2 (2015): 386-406. [3]. Zeng, Shuwen, et al.
[3] "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications." Chemical Society Reviews 43.10 (2014): 3426-3452.
[4] Hong, Qilin, et al. "Hybrid metal-graphene plasmonic sensor for multi-spectral sensing in both near-and mid-infrared ranges." Optics express 27.24 (2019): 35914-35924.
[5] Gallagher, Patrick, et al. "Quantum-critical conductivity of the Dirac fluid in graphene." Science 364.6436 (2019): 158-162.
[6] Rodrigo, Daniel, et al. "Mid-infrared plasmonic biosensing with graphene." Science 349.6244 (2015): 165-168.
[7] C. J. Chang-Hasnain and W. Yang. “High-contrast gratings for integrated optoelectronics.” Adv. Opt. Photon. 4, 379–440 (2012).
[8] C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-Contrast Grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).
[9] Wang, H. L., You, E. M., Panneerselvam, R., Ding, S. Y., & Tian, Z. Q. (2021). Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light: Science & Applications, 10(1), 1-19.
[10] C. F. R. Mateus, M. C. Y. Huang, Lu Chen, C. J. Chang-Hasnain and Y. Suzuki, "Broad-band mirror (1.12-1.62 μm) using a subwavelength grating," in IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1676-1678, July 2004
[11] Y. Zhou, M. C. Y. Huang and C. J. Chang-Hasnain, "Large Fabrication Tolerance for VCSELs Using High-Contrast Grating," in IEEE Photonics Technology Letters, vol. 20, no. 6, pp. 434-436, March15, 2008
[12] Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors. Sensors and actuators B: Chemical, 54(1-2), 3-15.
[13] Kretschmann, Erwin, and Heinz Raether. "Radiative decay of non radiative surface plasmons excited by light." Zeitschrift für Naturforschung A 23.12 (1968): 2135- 2136.
[14] Otto, Andreas. "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection." Zeitschrift für Physik A Hadrons and nuclei 216.4 (1968): 398-410.
[15] Huang, Yi, et al. "Graphene/insulator stack based ultrasensitive terahertz sensor with surface plasmon resonance." IEEE Photonics Journal 9.6 (2017): 1-11.
[16] Adato, Ronen, and Hatice Altug. "In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas." Nature communications 4.1 (2013): 1-10.
[17] Wei, Jingxuan, et al. "Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices." ACS applied materials & interfaces 11.50 (2019): 47270-47278.
[18] Liu, Na, et al. "Nanoantenna-enhanced gas sensing in a single tailored nanofocus." Nature materials 10.8 (2011): 631-636.
[19] Spadavecchia, Jolanda, et al. "Approach for plasmonic based DNA sensing: 53 amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures." Analytical chemistry 85.6 (2013): 3288-3296.
[20] Wadell, Carl, Svetlana Syrenova, and Christoph Langhammer. "Plasmonic hydrogen sensing with nanostructured metal hydrides." ACS nano 8.12 (2014): 11925-11940.
[21] Zangeneh-Nejad, Farzad, and Reza Safian. "A graphene-based THz ring resonator for label-free sensing." IEEE Sensors Journal 16.11 (2016): 4338-4344.
[22] Cicek, Kenan, Mustafa Eryürek, and Alper Kiraz. "Single-slot hybrid microring resonator hydrogen sensor." JOSA B 34.7 (2017): 1465-1470.
[23] Wang, Xiangxian, et al. "Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film." Optical Materials Express 9.7 (2019): 3079-3088.
[24] Nemova, Galina, and Raman Kashyap. "Fiber-Bragg-grating-assisted surface plasmon-polariton sensor." Optics letters 31.14 (2006): 2118-2120.
[25] Tong, Kai, et al. "Surface plasmon resonance biosensor based on graphene and grating excitation." Applied optics 58.7 (2019): 1824-1829.
[26] Joo, Yang Hyun, Seok Ho Song, and Robert Magnusson. "Demonstration of long-range surface plasmon-polariton waveguide sensors with asymmetric double-electrode structures." Applied Physics Letters 97.20 (2010): 201105.
[27] Ahmadivand, Arash, et al. "Rhodium plasmonics for deep-ultraviolet bio-chemical sensing." Plasmonics 11.3 (2016): 839-849.
[28] Yang, Chan-Shan, et al. "Hybrid graphene-based photonic-plasmonic biochemical sensor with a photonic and acoustic cavity structure." Crystals 11.10 (2021): 1175.
[29] Li, Xin, et al. "Graphene in photocatalysis: a review." Small 12.48 (2016): 6640-6696.
[30] Emani, Naresh Kumar, et al. "Graphene: a dynamic platform for electrical control of plasmonic resonance." Nanophotonics 4.2 (2015): 214-223.
[31] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109.
[32] Mikhailov, Sergey A., and Klaus Ziegler. "New electromagnetic mode in graphene." Physical review letters 99.1 (2007): 016803.
[33] Luo, Xiaoguang, et al. "Plasmons in graphene: recent progress and applications." Materials Science and Engineering: R: Reports 74.11 (2013): 351-376.
[34] Gonçalves, Paulo André Dias, and Nuno MR Peres. An introduction to graphene plasmonics. World Scientific, 2016.
[35] Etezadi, Dordaneh, et al. "Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas." ACS sensors 3.6 (2018): 1109-1117.
[36] Omeis, Fatima, et al. "Following the chemical immobilization of membrane proteins on plasmonic nanoantennas using infrared spectroscopy." ACS sensors 5.7 (2020): 2191-2197.
[37] Rodrigo, Daniel, et al. "Double-layer graphene for enhanced tunable infrared plasmonics." Light: Science & Applications 6.6 (2017): e16277-e16277.
[38] Gopalan, Kavitha K., et al. "Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics." Nano letters 18.9 (2018): 5913-5918.
[39] Guzelturk, B., Belisle, R. A., Smith, M. D., Bruening, K., Prasanna, R., Yuan, Y., ... & Lindenberg, A. M. (2018). Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling. Advanced Materials, 30(11), 1704737.
[40] Zhang, Z., Yu, X., Zhao, H., Xiao, T., Xi, Z., & Xu, H. (2007). Component analysis to isomer mixture with THz-TDS. Optics communications, 277(2), 273-276.
[41] Zheng, Z. P., Fan, W. H., Liang, Y. Q., & Yan, H. (2012). Application of terahertz spectroscopy and molecular modeling in isomers investigation: Glucose and fructose. Optics Communications, 285(7), 1868-1871.
[42] Mourou, G., et al. "Picosecond microwave pulses generated with a subpicosecond laser‐driven semiconductor switch." Applied Physics Letters 39.4 (1981): 295-296.
[43] Auston, D. H., Cheung, K. P., & Smith, P. R. (1984). Picosecond photoconducting Hertzian dipoles. Applied physics letters, 45(3), 284-286.
[44] Yeh, J‐W., et al. "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes." Advanced engineering materials 6.5 (2004): 299-303.
[45] Jien-Wei Yeh, The Development of High-Entropy Alloys, Hua Kang Journal of Engineering Chinese Culture University. 27(2011)1-18
[46] Tsai, Ming-Hung, and Jien-Wei Yeh. "High-entropy alloys: a critical review." Materials Research Letters 2.3 (2014): 107-123.
[47] Senkov, Oleg N., et al. "Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys." Intermetallics 19.5 (2011): 698-706.
[48] Wang, J., & Hu, X. (2017). Graphene-Enhanced Optical Signal Processing. Graphene Materials: Advanced Applications, 143.
[49] Yao, Yu, et al. "Broad electrical tuning of graphene-loaded plasmonic antennas." Nano letters 13.3 (2013): 1257-1264.
[50] Llatser, Ignacio, et al. "Graphene-based nano-patch antenna for terahertz radiation." Photonics and Nanostructures-Fundamentals and Applications 10.4 (2012): 353-358.
[51] Lin, Qi, et al. "Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide." Applied optics 56.34 (2017): 9536-9541.
[52] Emani, Naresh Kumar, et al. "Graphene: a dynamic platform for electrical control of plasmonic resonance." Nanophotonics 4.2 (2015): 214-223
[53] Li, Xuesong, et al. "Graphene films with large domain size by a two-step chemical 56 vapor deposition process." Nano letters 10.11 (2010): 4328-4334.
[54] Wan, Yuan, et al. "Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions." Optics Communications 410 (2018): 733-739.
[55] Das, Gobind, et al. "Plasmonic nanostructures for the ultrasensitive detection of biomolecules." Rivista del nuovo Cimento 39.11 (2016): 547-586.
[56] Li, Aobo, Shreya Singh, and Dan Sievenpiper. "Metasurfaces and their applications." Nanophotonics 7.6 (2018): 989-1011.
[57] Ouyang, Qingling, et al. "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor." Scientific reports 6.1 (2016): 1-13.
[58] Chou, Yu-Hsun, et al. "Ultrastrong mode confinement in ZnO surface plasmon nanolasers." ACS nano 9.4 (2015): 3978-3983.
[59] Qiao, Pengfei, Weijian Yang, and Connie J. Chang-Hasnain. "Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals." Advances in Optics and Photonics 10.1 (2018): 180-245.
[60] Sang, Tian, et al. "Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane." JOSA A 26.3 (2009): 559-565.
[61] Wang, S. S., and R. J. A. O. Magnusson. "Theory and applications of guided-mode resonance filters." Applied optics 32.14 (1993): 2606-2613.
[62] Hartstein, A., J. R. Kirtley, and J. C. Tsang. "Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers." Physical Review Letters 45.3 (1980): 201.
[63] Chen, L. C., Osawa, M., & Chang, H. C. 表面增顯紅外光技術與其在界面科學之應用研究.
[64] Zhou, Hong, et al. "Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing." International Journal of Optomechatronics 15.1 (2021): 97-119.
[65] Neubrech, F., Pucci, A., Cornelius, T. W., Karim, S., García-Etxarri, A., & Aizpurua, J. (2008). Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Physical review letters, 101(15), 157403.
[66] Gallagher, Warren. "FTIR analysis of protein structure." Course manual Chem 455 (2009).
[67] Lian, Jiarong, et al. "Efficient near ultraviolet organic light-emitting devices based on star-configured carbazole emitters." Current Applied Physics 11.3 (2011): 295-297.
[68] Glaser, T., Beck, S., Lunkenheimer, B., Donhauser, D., Köhn, A., Kröger, M., & Pucci, A. Organic Electronics, 14(2), 2013, 575-583.
[69] Chan-Shan Yang, Qi-Yan Zheng Tunable Terahertz High-contrast Gratings Using Graphene-based Surface Plasmon Polaritons