簡易檢索 / 詳目顯示

研究生: 陳品蓉
Chen, Pin-Jung
論文名稱: 探討中草藥純物質 PN 衍生物作為治療阿茲海默氏症藥物之開發與機轉
The development and mechanism of PN derivatives as therapeutic drugs for Alzheimer’s disease
指導教授: 林炎壽
Lin, Yen-Shou
口試委員: 李冠群
Lee, Guan-Chiun
梁美智
Liang, Mei-Chih
林炎壽
Lin, Yen-Shou
口試日期: 2023/06/20
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: 阿茲海默症β 類澱粉蛋白麩胺酸接受器DiBAC4(3)中草藥
英文關鍵詞: Alzheimer’s disease, amyloid β, glutamate receptor, DiBAC4(3), herbal medicine
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300960
論文種類: 學術論文
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 一、 阿茲海默症 1 二、 β 類澱粉蛋白形成及神經毒性 1 三、 β 類澱粉蛋白對麩胺酸傳遞 之 影響 2 四、 β 類澱粉蛋白所介導之訊息傳遞路徑 3 五、 阿茲海默症之模式小鼠 J20 4 六、 臨床治療阿茲海默症藥物 4 第二章 研究動機與目的 6 一、 研究動機與目的 6 第三章 研究材料與實驗方法 7 一、 藥劑 7 二、 小鼠大腦皮質神經細胞初級培養 7 三、 細胞免疫螢光染色法 (IMMUNOCYTOCHEMISTRY, ICC) 8 四、 細胞存活檢測 9 五、 β 類澱粉蛋白寡聚體製備及蛋白質斑點印漬分析 (DOT BLOT ASSAY) 9 六、 DIBAC4(3)膜電位螢光染劑進行藥物篩選 10 七、 西方墨點法 11 八、 基因型檢測 12 九、 實驗動物與藥物給予 12 十、 莫式水迷津測試 (MORRIS WATER MAZE) 13 十一、 巴恩斯迷宮 (BARNES MAZE) 14 十二、 新物體辨識 (NOVEL OBJECT RECOGNITION) 15 十三、 臉頰採血檢測血清中的 GOT、 GPT 15 十四、 灌流 (PERFUSION)和肝臟、腎臟組織 H&E 染色 16 十五、 統計分析 16 第四章 研究結果 17 一、 純物質 PN1~PN6 對神經細胞之毒性測試 17 二、 PN4 能改善 Aβ 寡聚體所導致的神經細胞不正常去極化 17 三、 PN4 可 透過 AMPAR 及 NMDAR 改善 Aβ 寡聚體所導致的神經細胞不正常去極化 18 四、 PN4 可降低神經細胞經 Aβ 寡聚體所誘導之 ERK 蛋白磷酸化 19 五、 PN4 可降低神經細胞經 NMDA 所誘導之 ERK 蛋白磷酸化 19 六、 給予 PN4 並不會影響小鼠的體重以及其生理參數 20 (一) 基因型檢測 20 (二) 體重測量 20 (三) 發炎指標- GOT、 GPT 21 (四) 肝臟、腎臟組織切片染色 21 七、 給予 PN4 無法改善 J20 小鼠在巴恩斯迷宮之空間學習記憶 21 八、 給予 PN4 無法改善 J20 小鼠在新物體辨識之辨識記憶 22 九、 給予 PN4 可以改善 J20 小鼠在莫氏水迷津之空間學習記憶 22 第五章、討論 24 參考文獻 28 圖表 34 圖一、 純物質 PN1~PN6 對神經細胞之毒性測試 35 圖二、 PN4 不影響 DIBAC4(3)膜電位螢光染劑之螢光亮度 37 圖三、 PN4 能改善 Aβ寡聚體所導致的神經細胞不正常去極化 39 圖四、 PN4 透過 AMPAR 改善 Aβ寡聚體所導致的神經細胞不正常去極化 41 圖五、 PN4 透過 NMDAR 改善 Aβ寡聚體所導致的神經細胞不正常去極化 43 圖六、 PN4 可降低神經細胞經 Aβ寡聚體所誘導之 ERK 蛋白磷酸化 45 圖七、 PN4 可降低神經細胞經 NMDA 所誘導之 ERK 蛋白磷酸化 47 圖八、小鼠基因型檢測以及給予 PN4 後體重的量測 49 圖九、給予 PN4 不影響小鼠的 GOT、 GPT 以及小鼠的組織型態 51 圖十、給予 PN4 無法改善 J20 小鼠在巴恩斯迷宮之空間學習記憶 53 圖十一、給予 PN4 無法改善 J20 小鼠在新物體辨識之辨識記憶 55 圖十二、給予 PN4 可以改善 J20 小鼠在莫氏水迷宮之空間學習記憶 57 附錄 58 小鼠大腦皮質神經元進行初級培養之純度及特性的確認 58 檢測所製備 類澱粉蛋白寡聚體之形式 58

    Barnes, C.A. (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol, 93, 74-104.

    Bell, K.A., O'Riordan, K.J., Sweatt, J.D. & Dineley, K.T. (2004) MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time. J Neurochem, 91, 349-361.

    Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G. & Silva, A.J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59-68.

    Breijyeh, Z. & Karaman, R. (2020) Comprehensive review on Alzheimer's Disease: causes and treatment. Molecules, 25.

    Brewer, G.J. & Torricelli, J.R. (2007) Isolation and culture of adult neurons and neurospheres. Nat Protoc, 2, 1490-1498.

    Bukke, V.N., Archana, M., Villani, R., Romano, A.D., Wawrzyniak, A., Balawender, K., Orkisz, S., Beggiato, S., Serviddio, G. & Cassano, T. (2020) The dual role of glutamatergic neurotransmission in Alzheimer's disease: From pathophysiology to pharmacotherapy. Int J Mol Sci, 21.

    Chasseigneaux, S., Dinc, L., Rose, C., Chabret, C., Coulpier, F., Topilko, P., Mauger, G. & Allinquant, B. (2011) Secreted amyloid precursor protein β and secreted amyloid precursor protein α induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One, 6, e16301.

    Chen, G.F., Xu, T.H., Yan, Y., Zhou, Y.R., Jiang, Y., Melcher, K. & Xu, H.E. (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin, 38, 1205-1235.

    Cheng, I.H., Scearce-Levie, K., Legleiter, J., Palop, J.J., Gerstein, H., Bien-Ly, N., Puoliväli, J., Lesné, S., Ashe, K.H., Muchowski, P.J. & Mucke, L. (2007) Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem, 282, 23818-23828.

    Cho, E.J., Kim, H.Y. & Lee, A.Y. (2020) Paeoniflorin ameliorates Aβ-stimulated neuroinflammation via regulation of NF-κB signaling pathway and Aβ degradation in C6 glial cells. Nutr Res Pract, 14, 593-605.

    De Felice, F.G., Velasco, P.T., Lambert, M.P., Viola, K., Fernandez, S.J., Ferreira, S.T. & Klein, W.L. (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem, 282, 11590-11601.

    Dhanasekaran, D.N. & Reddy, E.P. (2008) JNK signaling in apoptosis. Oncogene, 27, 6245-6251.

    Dineley, K.T., Westerman, M., Bui, D., Bell, K., Ashe, K.H. & Sweatt, J.D. (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci, 21, 4125-4133.

    Erickson, M.A., Maramara, L.A. & Lisman, J. (2010) A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory. J Cogn Neurosci, 22, 2530-2540.

    Esposito, Z., Belli, L., Toniolo, S., Sancesario, G., Bianconi, C. & Martorana, A. (2013) Amyloid β, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track? CNS Neurosci Ther, 19, 549-555.

    Hunter, S., Arendt, T. & Brayne, C. (2013) The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol Neurobiol, 48, 556-570.

    Karl, T., Bhatia, S., Cheng, D., Kim, W.S. & Garner, B. (2012) Cognitive phenotyping of amyloid precursor protein transgenic J20 mice. Behav Brain Res, 228, 392-397.

    Kim, E.K. & Choi, E.J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta, 1802, 396-405.

    Kim, S.H., Lee, M.K., Lee, K.Y., Sung, S.H., Kim, J. & Kim, Y.C. (2009) Chemical constituents isolated from Paeonia lactiflora roots and their neuroprotective activity against oxidative stress in vitro. J Enzyme Inhib Med Chem, 24, 1138-1140.

    Kogan, J.H., Frankland, P.W., Blendy, J.A., Coblentz, J., Marowitz, Z., Schütz, G. & Silva, A.J. (1997) Spaced training induces normal long-term memory in CREB mutant mice. Curr Biol, 7, 1-11.

    Leger, M., Quiedeville, A., Bouet, V., Haelewyn, B., Boulouard, M., Schumann-Bard, P. & Freret, T. (2013) Object recognition test in mice. Nat Protoc, 8, 2531-2537.

    Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., Trinchese, F., Liu, S., Gunn-Moore, F., Lue, L.F., Walker, D.G., Kuppusamy, P., Zewier, Z.L., Arancio, O., Stern, D., Yan, S.S. & Wu, H. (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science, 304, 448-452.

    Ma, X., Song, M., Yan, Y., Ren, G., Hou, J., Qin, G., Wang, W. & Li, Z. (2021) Albiflorin alleviates cognitive dysfunction in STZ-induced rats. Aging (Albany NY), 13, 18287-18297.

    Mayr, B. & Montminy, M. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2, 599-609.

    Meilandt, W.J., Yu, G.Q., Chin, J., Roberson, E.D., Palop, J.J., Wu, T., Scearce-Levie, K. & Mucke, L. (2008) Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer's disease. J Neurosci, 28, 5007-5017.

    Morris, R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods, 11, 47-60.

    Morrison, D.K. (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol, 4.

    Mucke, L., Masliah, E., Yu, G.Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K. & McConlogue, L. (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci, 20, 4050-4058.

    Nhan, H.S., Chiang, K. & Koo, E.H. (2015) The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol, 129, 1-19.

    Palop, J.J. & Mucke, L. (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci, 13, 812-818.

    Romberg, C., Raffel, J., Martin, L., Sprengel, R., Seeburg, P.H., Rawlins, J.N., Bannerman, D.M. & Paulsen, O. (2009) Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus. Eur J Neurosci, 29, 1141-1152.

    Russo, C., Dolcini, V., Salis, S., Venezia, V., Zambrano, N., Russo, T. & Schettini, G. (2002) Signal transduction through tyrosine-phosphorylated C-terminal fragments of amyloid precursor protein via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer's disease brain. J Biol Chem, 277, 35282-35288.

    Sakamoto, K.M. & Frank, D.A. (2009) CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res, 15, 2583-2587.

    Sanderson, D.J., Good, M.A., Skelton, K., Sprengel, R., Seeburg, P.H., Rawlins, J.N. & Bannerman, D.M. (2009) Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: evidence for a dual-process memory model. Learn Mem, 16, 379-386.

    Saura, C.A., Chen, G., Malkani, S., Choi, S.Y., Takahashi, R.H., Zhang, D., Gouras, G.K., Kirkwood, A., Morris, R.G. & Shen, J. (2005) Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. J Neurosci, 25, 6755-6764.

    Sevigny, J., Chiao, P., Bussière, T., Weinreb, P.H., Williams, L., Maier, M., Dunstan, R., Salloway, S., Chen, T., Ling, Y., O'Gorman, J., Qian, F., Arastu, M., Li, M., Chollate, S., Brennan, M.S., Quintero-Monzon, O., Scannevin, R.H., Arnold, H.M., Engber, T., Rhodes, K., Ferrero, J., Hang, Y., Mikulskis, A., Grimm, J., Hock, C., Nitsch, R.M. & Sandrock, A. (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature, 537, 50-56.

    Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J. & Sabatini, B.L. (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci, 27, 2866-2875.

    Sharma, K., Pradhan, S., Duffy, L.K., Yeasmin, S., Bhattarai, N. & Schulte, M.K. (2021) Role of receptors in relation to plaques and tangles in Alzheimer's disease pathology. Int J Mol Sci, 22.

    Shaywitz, A.J. & Greenberg, M.E. (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 68, 821-861.

    Shi, X., Chen, Y.H., Liu, H. & Qu, H.D. (2016) Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease in mice. Mol Med Rep, 14, 2397-2404.

    Spencer, S. & Kalivas, P.W. (2017) Glutamate transport: A new bench to bedside mechanism for treating drug abuse. Int J Neuropsychopharmacol, 20, 797-812.

    Sponne, I., Fifre, A., Drouet, B., Klein, C., Koziel, V., Pinçon-Raymond, M., Olivier, J.L., Chambaz, J. & Pillot, T. (2003) Apoptotic neuronal cell death induced by the non-fibrillar amyloid-beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J Biol Chem, 278, 3437-3445.

    Sun, A., Liu, M., Nguyen, X.V. & Bing, G. (2003) P38 MAP kinase is activated at early stages in Alzheimer's disease brain. Exp Neurol, 183, 394-405.

    Tu, S., Okamoto, S., Lipton, S.A. & Xu, H. (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease. Mol Neurodegener, 9, 48.

    Yang, W.N., Ma, K.G., Chen, X.L., Shi, L.L., Bu, G., Hu, X.D., Han, H., Liu, Y. & Qian, Y.H. (2014) Mitogen-activated protein kinase signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor-mediated amyloid-β uptake in SH-SY5Y cells. Neuroscience, 278, 276-290.

    Yarza, R., Vela, S., Solas, M. & Ramirez, M.J. (2015) c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer's disease. Front Pharmacol, 6, 321.

    無法下載圖示 電子全文延後公開
    2028/07/20
    QR CODE