簡易檢索 / 詳目顯示

研究生: 林大鈞
論文名稱: 三五族半導體奈米線之光譜研究
Optical studies of III-V semiconducting nanowires
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 145
中文關鍵詞: 半導體奈米線光譜
論文種類: 學術論文
相關次數: 點閱:219下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究不同結構與成份之Ⅲ-Ⅴ族半導體(GaN, GaP, InP)奈米線的光譜特性,有助於了解其作為光電及電子材料之基礎科學相關問題。
    首先,我們發現氮化鎵奈米線為烏采結構,磷化鎵與磷化銦為閃鋅礦結構,晶格常數等參數與塊材相近。其次,我們觀察到奈米線元素成份的组成比例大致為1:1,顯示其為高純度、高品質的實驗樣品。
    由全頻光譜與拉曼散射光譜分析,我們發現奈米線之紅外光活性振動模與電子吸收帶與塊材相近,而聲子侷限模型可以解釋其拉曼活性峰紅位移與半高寬變寬的現象。此外,我們觀察到磷化鎵與磷化銦奈米線TO與LO振動模間有表面聲子振動模,並且利用兩個介電常數模型來驗證其頻率位置。隨著奈米線尺寸縮小,表面聲子模的頻率往低頻偏移,半高寬變寬,且其強度增強。
    由共振拉曼散射光譜分析中,我們發現奈米線之某些聲子振動模的共振行為與電子躍遷有密切關係。最後,由變溫拉曼散射光譜分析中,我們觀察到奈米線光學振動模隨著溫度升高頻率有往低頻偏移,半高寬逐漸變寬的現象,此歸因於光學聲子衰減為兩聲學聲子。有趣地是,表面聲子模之溫度變化並不符合非諧效應的預測。

    We report on structural, stoichiometric, and optical properties of high-purity and -quality Ⅲ-Ⅴ semiconductoring nanowires, such as GaN, GaP, and InP. The X-ray diffraction data and energy dispersive X-ray spectroscopy confirm that these wire-like structures are indeed GaN, GaP, and InP nanowires, and they can be indexed to hexagonal wurtzite structure and zinc blende structure. Optical reflectance and transmittance spectra of Ⅲ-Ⅴ semiconductoring nanowires reveal infrared-active phonons and electronic absorption bands. The nanosize dependences of Raman peak shift and the broadening of the phonon modes agree with those calculated on the basis of the phonon confinement model. In addition, a new Raman peak observed in the gap between the transverse and longtidinal optical phonons in GaP and InP nanowires is identified as the surface phonon mode using two dielectric response function model. The Raman-scattering studies of certain phonons show a different resonant enhanced behavior, which can be used to verify the electronic structures in these nanowires. Moreover, the temperature dependence of the phononic Raman spectra in these nanowires can be well described in terms of the phonon self-energy corresponding to two-phonon anharmonic processes.

    中文摘要 …………………………………………………………… i 英文摘要 …………………………………………………………… ii 誌謝 ………………………………………………………………… iii 目錄 ………………………………………………………………… iv 表目錄 ……………………………………………………………… vi 圖目錄 ……………………………………………………………… viii 第一章 緒論 ………………………………………………………… 1 第二章 研究背景 …………………………………………………… 6 2-1 Ⅲ-Ⅴ族半導體材料 ……………………………………… 6 2-2 奈米材料發展現況 ……………………………………… 9 第三章 光譜儀的基本原理及儀器設備 ………………………… 17 3-1 紅外線光譜儀的工作原理及裝置 ……………………… 17 3-2 分光光譜儀的工作原理及裝置 ………………………… 20 3-3 拉曼光譜儀的工作原理及裝置 ………………………… 23 3-4 反射、穿透光譜量測原理及光學參數 ………………… 28 3-4-1 電磁波在介質中的傳遞 ………………………… 28 3-4-2 克拉馬-克羅尼關係式 ………………………… 30 3-4-3 羅侖茲模型 ……………………………………… 31 3-5 拉曼散射原理 …………………………………………… 32 3-5-1 古典理論 ………………………………………… 33 3-5-2 量子理論 ………………………………………… 35 3-5-3 共振拉曼散射理論 ……………………………… 36 第四章 實驗樣品 ………………………………………………… 47 4-1 樣品製程 ……………………………………………… 47 4-2 表面形態量測與成份分析 ……………………………… 48 4-3 晶格結構量測 …………………………………………… 50 4-4 螢光光譜量測 …………………………………………… 54 第五章 實驗結果與討論 ………………………………………… 70 5-1 全頻光譜研究 …………………………………………… 70 5-2 微觀拉曼散射研究 ……………………………………… 73 5-2-1 聲子侷限模型 …………………………………… 75 5-2-2 表面聲子模 ……………………………………… 79 5-3 微觀共振拉曼散射研究 ………………………………… 81 5-4 巨觀變溫拉曼散射研究 ………………………………… 83 第六章 結論與未來展望 ……………………………………… 124 附錄 ……………………………………………………………… 126 參考文獻 ………………………………………………………… 127

    [1]P. S. Peercy, Nature 406, 1023 (2000).
    [2]陳貴賢,物理雙月刊23卷6期(2001) p.610.
    [3]A. P. Alivisatos, Science 271, 933 (1996).
    [4]F. A. Ponce and D. P. Bour, Nature 386, 351 (1997).
    [5]G. Fasol, Science 272, 1751 (1996).
    [6]H. Morkoc and S.N. Mohammad, Science 267, 51 (1995).
    [7]H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997).
    [8]H. Siegle, L. Eckey, A. Hoffmann, C. Thomsen, B. K. Meyer, D. Schikora, M. Hankeln, and K. Lischka, Solid State Commun. 96, 943 (1995).
    [9]R. Dingle, K. L. Shaklee, R. F. Leheny, R. B. Zetterstorm, Appl. Phys. Lett. 19, 5 (1971).
    [10]M. Asif Khan, D. T. Olson, J. M. Van Hove, and J. N. Kuznia, Appl. Phys. Lett. 58, 1515 (1991).
    [11]Shuji Nakamura, Takashi Mukai, and Masayuki Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [12]Holger T. Grahn, Introduction to Semiconductor Physics, World Scientific, Singapore, 1998.
    [13]G. M. Blom and J. M. Woodall, Appl. Phys. Lett. 17, 373 (1970).
    [14]Frank J. P. Schuurmans, Daniel Vanmaekelbergh, Jao van de Lagemaat, Ad Lagendijk, Science 284, 141 (1999).
    [15]Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, and Charles M. Lieber, Nature 409, 66 (2001).
    [16]Jianfang Wang, Mark S. Gudiksen, Xiangfeng Duan, Yi Cui, and Charles M. Lieber, Science 293, 1455 (2001).
    [17]Yu Huang, Xiangfeng Duan, Yi Cui, and Charles M. Lieber, Nano Lett. 2, 101 (2002).
    [18]Justin C. Johnson, Heon-Jin Choi, Kelly P. Knutsen, Richard D. Schaller, Peidong Yang, and Richard J. Saykally, Nature Materials 1, 106 (2002).
    [19]Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971第四版上冊。
    [20]李冠卿著,近代光學,聯經出版社,中華民國七十七年九月初版。
    [21]A. Zibold, H. L. Liu, S. W. Moore, J. M. Graybeal, and D. B. Tanner, Phys. Rev. B 53, 11734 (1996).
    [22]A. C. Albrecht, J. Chem. Phys. 34, 1476 (1961).
    [23]J. R. Ferraro and K. Nakamoto, Introductory Raman spectroscopy, Academic Press, New York, 1994.
    [24]C. C. Chen and C. C. Yen, Adv. Mater. 12, 738 (2000).
    [25]楊世綱,私立淡江大學物理研究所碩士論文,91年1月。
    [26]J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).
    [27]O. Lagerstedt and B. Monemar, Phys. Rev. B 19, 3064 (1979).
    [28]J. C. Wang, S. Q. Feng, and D. P. Yu, Appl. Phys. A 75, 691 (2002).
    [29]Sadao Adachi, Physical properties of III-V semiconductor compounds, Wiley, New York, 1992.
    [30]H. W. Seo, S. Y. Bae, J. Park, H. Yang, and S. Kim, Chem. Commun., 2564 (2002).
    [31]C. Tang, Y. Bando, Z. Liu, and D. Golberg, Chem. Phys. Lett. 376, 676 (2003).
    [32]J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J.-M. Wagner, and F. Bechstedt, Phys. Rev. B 56, 14399 (1997).
    [33]H. Fu, V. Ozolins, and Alex Zunger, Phys. Rev. B 59, 2881 (1999).
    [34]S. Bloom, G. Harbeke, E. Meier, and I. B. Ortenburger, Phys. Status. Solid (b) 66, 161 (1974).
    [35]A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, Phys. Rev. B 48, 11810 (1993).
    [36]H. M. Tütüncü, G. P. Srivastava, Phys. Rev. B 62, 5028 (2000).
    [37]H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
    [38]I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).
    [39]K. K. Tiong, P. M. Amirharaj, F. H. Follak, and D. E. Aspnes, Appl. Phys. Lett. 44, 122 (1984).
    [40]H. L. Lin, C. C. Chen, C. T. Chia, C. C. Yeh, C. H. Chen, M. Y. Yu, S. Keller, and S. P. DenBaars, Chem. Phys. Lett. 345, 245 (2001).
    [41]A. S. Barker and JR., Phys. Rev. 165, 917 (1968).
    [42]C. Hilsum, S. Fray and C. Smith, Solid State Commun. 7, 1057 (1969).
    [43]R. Fuchs and K. L. Kliewer, J. Opt. Soc. Am. 58, 319 (1968).
    [44]Anushree Roy and Ajay K. Sood, Phys. Rev. B 53, 12127 (1996).
    [45]R. Ruppin and R. Englman, Rep. Prog. Phys. 33, 144 (1970).
    [46]T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, and K. Manabe, J. Appl. Phys. 75, 1098 (1994).
    [47]J. F. Scott, T. C. Damen, R. C. C. Leite, and W. T. Silfvast, Solid State Commun. 7, 953 (1969).
    [48]M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28 1928 (1983).
    [49]Puspashree Mishra and K. P. Jain, Phys. Rev. B 62 14790 (2000).
    [50]T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, J. Phys.: Condens. Matter 7, L129 (1995).
    [51]S. Murugkar, R. Merlin, A. Botchkarev, A. Salvador, and H. Morkoc, J. Appl. Phys. 77, 6042 (1995).
    [52]G. S. Cheng, L. D. Zang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q. Mao, Appl. Phys. Lett. 75, 2455 (1999).
    [53]M. V. Hobden and J. P. Russell, Phys. Lett. 13, 39 (1964).
    [54]S. Hayashi and H. Kanamori, Phys. Rev. B 26, 7079 (1982).
    [55]I. M. Tiginyanu, G. Irmer, J. Monecke, and H. L. Hartnagel, Phys. Rev. B 55, 6739 (1997).
    [56]G. F. Alfrey and P. H. Borcherds, J. Phys. C 5, L275 (1972).
    [57]E. Bedel, G. Landa, R. Charles, J. P. Redoules, and J. B. Renucci, J. Phys. C 19, 1471 (1986).
    [58]L. Artús, R. Cuscó, J. M. Martín, and G. González-Díaz, Phys. Rev. B 50, 11552 (1994).

    QR CODE