研究生: |
王存多 Wang, Tsun-To |
---|---|
論文名稱: |
以邏輯閘及緩衝終結子強化苯乙胺全細胞生物感測器並發展苯乙胺生物感測器的延伸應用 Enhancing Whole-Cell Biosensors with Logic Gates and Buffer Terminators for Phenylethylamine Detection and Extended Applications |
指導教授: |
葉怡均
Yeh, Yi-Chun |
口試委員: |
葉怡均
Yeh, Yi-Chun 陳頌方 Chen, Sung-Fang 蔡伸隆 Tsai, Shen-Long |
口試日期: | 2024/06/20 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 苯乙胺生物感測器 、邏輯閘 、緩衝終結子 、水凝膠 |
英文關鍵詞: | Phenylethylamine Whole-cell Biosensor, And Gate, Buffer terminator, Hydrogel |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401120 |
論文種類: | 學術論文 |
相關次數: | 點閱:139 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
苯乙胺為一種神經傳導物質於腦中扮演重要的角色,苯乙胺又為許多藥物、神經傳導物質的基本單元,因此顯現檢測苯乙胺的重要性。先前研究中,透過在大腸桿菌邏輯閘系統來提高傳感器對PEA的特異性。然而PtynA啟動子的洩漏表達問題導致苯乙酸對傳感器的干擾,因此在本篇的研究中,測試不同的終止子以解決啟動子洩漏表達問題。最終PEA生物傳感器的動態範圍為1 µM到400 µM,線性範圍在50 µM到400 µM之間,偵測極限到達1.86 µM。另外也發展了水凝膠封裝細菌的系統,優化了兩種水凝膠:海藻酸-丙烯醯胺、海藻酸-聚合離胺酸水凝膠,針對培養條件、製備條件進行優化並發現使用0.25倍M9培養基製備的海藻酸-聚合離胺酸水凝膠在1倍的M9培養基下培養16小時能夠得到最好的結果,同時我們也將最優化菌株YCY_1644封裝進水凝膠可以看到與空白實驗明顯差別的螢光結果,開發出可以用於實驗室所有生物感測器的水凝膠,以達到全細胞生物感測器臨場檢測以及可攜性的價值。此外我們針對大腸桿菌MG1655染色體中對於苯乙胺調控的相關基因feaR、feaB以及tynA進行基因剔除,並發展螢光探針para-methoxy-2-amino benzamidoxime ( PMA )期許未來能夠進行安非他命以及篩選TynA蛋白突變體之應用。
Phenylethylamine (PEA) is a neurotransmitter that plays an important role in the brain and serves as a basic unit for many drugs and neurotransmitters, highlighting the significance of detecting PEA. Previous research enhanced the specificity of PEA sensors using a logic gate system in Escherichia coli. However, the issue of promoter leakage from the PtynA led to interference from phenylacetic acid on the sensor. Therefore, this study tested different terminators to address the problem of promoter leakage. Ultimately, the dynamic range of the PEA biosensor was 1 µM to 400 µM, with a linear range between 50 µM and 400 µM and Limit of Detection ( LOD ) reaching 1.86 µM. Additionally, a system for encapsulating bacteria in hydrogels was developed, optimizing two types of hydrogels: alginate-acrylamide and alginate-poly-lysine hydrogels. Optimization of culture and preparation conditions revealed that using alginate-poly-lysine hydrogel prepared with 0.25x M9 medium and cultured in 1x M9 medium for 16 hours yielded the best results. Furthermore, encapsulating the optimized strain YCY_1644 in the hydrogel produced significant fluorescent results compared to blank experiments. This development of a hydrogel suitable for all laboratory biosensors aims to achieve on-site detection and portability for whole-cell biosensors. Additionally, genes related to PEA regulation in the Escherichia coli MG1655 chromosome, including feaR, feaB, and tynA, were deleted, and a fluorescent probe, para-methoxy-2-amino benzamidoxime (PMA), was developed, aiming for future applications in amphetamine detection and TynA protein mutant screening
(1) Castells, X.; Blanco‐Silvente, L.; Cunill, R. Amphetamines for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database of Systematic Reviews 2018, (8).
(2) Thorpy, M. J. Update on therapy for narcolepsy. Current treatment options in neurology 2015, 17, 1-12.
(3) Stahl, S. M.; Pradko, J. F.; Haight, B. R.; Modell, J. G.; Rockett, C. B.; Learned-Coughlin, S. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Primary care companion to the Journal of clinical psychiatry 2004, 6 (4), 159.
(4) Shalabi, A. R.; Walther, D.; Baumann, M. H.; Glennon, R. A. Deconstructed analogues of bupropion reveal structural requirements for transporter inhibition versus substrate-induced neurotransmitter release. ACS chemical neuroscience 2017, 8 (6), 1397-1403.
(5) Kim, A.; Nguyen, J.; Babaei, M.; Kim, A.; Geller, D. H.; Vidmar, A. P. A narrative review: phentermine and topiramate for the treatment of pediatric obesity. Adolescent Health, Medicine and Therapeutics 2023, 125-140.
(6) Statler, A. K.; Maani, C. V.; Kohli, A. Ephedrine. In StatPearls [Internet], StatPearls Publishing, 2023.
(7) Klein, M. O.; Battagello, D. S.; Cardoso, A. R.; Hauser, D. N.; Bittencourt, J. C.; Correa, R. G. Dopamine: functions, signaling, and association with neurological diseases. Cellular and molecular neurobiology 2019, 39 (1), 31-59.
(8) Wortsman, J. Role of epinephrine in acute stress. Endocrinology and Metabolism Clinics 2002, 31 (1), 79-106.
(9) Saboory, E.; Ghasemi, M.; Mehranfard, N. Norepinephrine, neurodevelopment and behavior. Neurochemistry international 2020, 135, 104706.
(10) Mohammad‐Zadeh, L.; Moses, L.; Gwaltney‐Brant, S. Serotonin: a review. Journal of veterinary pharmacology and therapeutics 2008, 31 (3), 187-199.
(11) Ralph, R. J.; Paulus, M. P.; Fumagalli, F.; Caron, M. G.; Geyer, M. A. Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. Journal of Neuroscience 2001, 21 (1), 305-313.
(12) Grossman, G. H.; Mistlberger, R. E.; Antle, M. C.; Ehlen, J. C.; Glass, J. D. Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus. Neuroreport 2000, 11 (9), 1929-1932.
(13) Paus, T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature reviews neuroscience 2001, 2 (6), 417-424.
(14) Berridge, K. C.; Kringelbach, M. L. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 2008, 199, 457-480.
(15) Sengupta, T.; Mohanakumar, K. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice. Neurochemistry international 2010, 57 (6), 637-646.
(16) Pei, Y.; Asif-Malik, A.; Canales, J. J. Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry, and clinical implications. Frontiers in neuroscience 2016, 10, 190244.
(17) Mosnaim, A. D.; Hudzik, T.; Wolf, M. E. Behavioral effects of β-phenylethylamine and various monomethylated and monohalogenated analogs in mice are mediated by catecholaminergic mechanisms. American Journal of Therapeutics 2015, 22 (6), 412-422.
(18) Kusaga, A.; Yamashita, Y.; Koeda, T.; Hiratani, M.; Kaneko, M.; Yamada, S.; Matsuishi, T. Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Annals of neurology 2002, 52 (3), 372-374.
(19) Xie, Z.; Miller, G. M. β-phenylethylamine alters monoamine transporter function via trace amine-associated receptor 1: implication for modulatory roles of trace amines in brain. Journal of Pharmacology and Experimental Therapeutics 2008, 325 (2), 617-628.
(20) Lindemann, L.; Hoener, M. C. A renaissance in trace amines inspired by a novel GPCR family. Trends in pharmacological sciences 2005, 26 (5), 274-281.
(21) Apollonio, L. G.; Pianca, D. J.; Whittall, I. R.; Maher, W. A.; Kyd, J. M. A demonstration of the use of ultra-performance liquid chromatography–mass spectrometry [UPLC/MS] in the determination of amphetamine-type substances and ketamine for forensic and toxicological analysis. Journal of Chromatography B 2006, 836 (1-2), 111-115.
(22) Pawar, R. S.; Grundel, E.; Fardin-Kia, A. R.; Rader, J. I. Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC–MS/MS methods. Journal of pharmaceutical and biomedical analysis 2014, 88, 457-466.
(23) Kaddoumi, A.; Kubota, A.; Nakashima, M. N.; Takahashi, M.; Nakashima, K. High performance liquid chromatography with UV detection for the simultaneous determination of sympathomimetic amines using 4‐(4, 5‐diphenyl‐1H‐imidazole‐2‐yl) benzoyl chloride as a label. Biomedical Chromatography 2001, 15 (6), 379-388.
(24) Tsuji, M.; Ohi, K.; Taga, C.; Myojin, T.; Takahashi, S. Determination of β-phenylethylamine concentrations in human plasma, platelets, and urine and in animal tissues by high-performance liquid chromatography with fluorometric detection. Analytical biochemistry 1986, 153 (1), 116-120.
(25) Kawamura, K.; Matsumoto, T.; Nakahara, T.; Hirano, M.; Uchimura, H.; Maeda, H. Improved method for determination of β-phenylethylamine in human plasma by solid-phase extraction and high-performance liquid chromatography with fluorescence detection. Journal of liquid chromatography & related technologies 2000, 23 (13), 1981-1993.
(26) Van Bocxlaer, J.; Lambert, W.; Thienpont, L.; De Leenheer, A. Quantitative determination of amphetamine and α-phenylethylamine enantiomers in judicial samples using capillary gas chromatography. Journal of analytical toxicology 1997, 21 (1), 5-11.
(27) Suzuki, O.; Hattori, H. Determination of β‐phenylethylamine as its isothiocyanate derivative in biological samples by gas chromatography mass spectrometry. Biomedical Mass Spectrometry 1983, 10 (7), 430-433.
(28) Tanen, J. L.; Lurie, I. S.; Marginean, I. Gas chromatography with dual cold electron ionization mass spectrometry and vacuum ultraviolet detection for the analysis of phenylethylamine analogues. Forensic Chemistry 2020, 21, 100281.
(29) Ma, S.; Wang, Y.; Jiang, L.; Hu, R.; Luo, Z.; Li, G. Solid-contact ion-selective electrodes for potentiometric determination of phenylethylamine in vitro. Measurement Science and Technology 2021, 32 (11), 115116.
(30) Huebert, N. D.; Schwach, V.; Richter, G.; Zreika, M.; Hinze, C.; Haegele, K. D. The measurement of β-phenylethylamine in human plasma and rat brain. Analytical biochemistry 1994, 221 (1), 42-47.
(31) Ortuño, J.; Olmos, J.; Torralba, E.; Molina, A. Sensing and characterization of neurotransmitter 2-phenylethylamine based on facilitated ion transfer at solvent polymeric membranes using different electrochemical techniques. Sensors and Actuators B: Chemical 2016, 222, 930-936.
(32) Huisman, H.; Wynveen, P.; Nichkova, M.; Kellermann, G. Novel ELISAs for screening of the biogenic amines GABA, glycine, β-phenylethylamine, agmatine, and taurine using one derivatization procedure of whole urine samples. Analytical chemistry 2010, 82 (15), 6526-6533.
(33) Apollonio, L. G.; Whittall, I. R.; Pianca, D. J.; Kyd, J. M.; Maher, W. A. Matrix effect and cross-reactivity of select amphetamine-type substances, designer analogues, and putrefactive amines using the Bio-Quant direct ELISA presumptive assays for amphetamine and methamphetamine. Journal of analytical toxicology 2007, 31 (4), 208-213.
(34) Li, Y.; Lu, S.; Liu, Z.; Sun, L.; Guo, J.; Hu, P.; Zhang, J.; Zhang, Y.; Wang, Y.; Ren, H. A monoclonal antibody based enzyme-linked immunosorbent assay for detection of phenylethanolamine A in tissue of swine. Food chemistry 2015, 167, 40-44.
(35) Bousse, L. Whole cell biosensors. Sensors and Actuators B: Chemical 1996, 34 (1-3), 270-275.
(36) Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 2017, 17 (7), 1623.
(37) Hu, L.; Su, H.; Chen, S.; Chen, X.; Guo, M.; Liu, H.; Yang, H.; Sun, B. Lab in a Cell: A bioautomated and biointegrated whole-cell biosensing platform for food hazards analysis. Trends in Food Science & Technology 2024, 104489.
(38) Rawson, D. M.; Willmer, A. J.; Turner, A. P. Whole-cell biosensors for environmental monitoring. Biosensors 1989, 4 (5), 299-311.
(39) Xian, Y.; Zhang, F.; Wang, M.; Zhao, X.; Sun, X.; Lu, Z.; Zhang, G. Whole-cell biosensor engineering based on the transcription factor XylS/Pm for sensitive detection of PCB intermediate chlorobenzoic acid. Biochemical Engineering Journal 2024, 202, 109153.
(40) Amaro, F.; Turkewitz, A. P.; Martín‐González, A.; Gutiérrez, J. C. Whole‐cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila. Microbial biotechnology 2011, 4 (4), 513-522.
(41) Veltman, B.; Harpaz, D.; Sadeh, A.; Eltzov, E. Whole-cell bacterial biosensor applied to identify the presence of Thaumatotibia leucotreta larva in citrus fruits by volatile sensing. Food Control 2024, 110388.
(42) Gao, Y.-Z.; Wang, Y.; Ji, M.; Zhou, N.-Y.; Huang, W. E. A whole-cell hydrogen peroxide biosensor and its application in visual food analysis. The Innovation Life 2023, 1 (1), 100011-100024-100011-100031.
(43) Verma, N.; Kaur, H.; Kumar, S. Whole cell based electrochemical biosensor for monitoring lead ions in milk. Biotechnology 2011, 10 (3), 259-266.
(44) Hillger, J. M.; Schoop, J.; Boomsma, D. I.; Slagboom, P. E.; IJzerman, A. P.; Heitman, L. H. Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines. Biosensors and Bioelectronics 2015, 74, 233-242.
(45) Feng, X.; Castracane, J.; Tokranova, N.; Gracias, A.; Lnenicka, G.; Szaro, B. G. A living cell-based biosensor utilizing G-protein coupled receptors: Principles and detection methods. Biosensors and Bioelectronics 2007, 22 (12), 3230-3237.
(46) Zager, V.; Cemazar, M.; Hreljac, I.; Lah, T.; Sersa, G.; Filipic, M. Development of human cell biosensor system for genotoxicity detection based on DNA damage-induced gene expression. Radiology and oncology 2010, 44 (1), 42-51.
(47) Zeng, J.; Spiro, S. Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli. Journal of bacteriology 2013, 195 (22), 5141-5150.
(48) Rottinghaus, A. G.; Xi, C.; Amrofell, M. B.; Yi, H.; Moon, T. S. Engineering ligand-specific biosensors for aromatic amino acids and neurochemicals. Cell systems 2022, 13 (3), 204-214. e204.
(49) Dı́az, E.; Ferrández, A.; Prieto, M. a. A.; Garcı́a, J. L. Biodegradation of aromatic compounds by Escherichia coli. Microbiology and Molecular Biology Reviews 2001, 65 (4), 523-569.
(50) Shaner, N. C.; Patterson, G. H.; Davidson, M. W. Advances in fluorescent protein technology. Journal of cell science 2007, 120 (24), 4247-4260.
(51) Kamiyama, D.; Sekine, S.; Barsi-Rhyne, B.; Hu, J.; Chen, B.; Gilbert, L. A.; Ishikawa, H.; Leonetti, M. D.; Marshall, W. F.; Weissman, J. S. Versatile protein tagging in cells with split fluorescent protein. Nature communications 2016, 7 (1), 11046.
(52) Tsien, R. Y. The green fluorescent protein. Annual review of biochemistry 1998, 67 (1), 509-544.
(53) Park, D. M.; Taffet, M. J. Combinatorial sensor design in Caulobacter crescentus for selective environmental uranium detection. ACS synthetic biology 2019, 8 (4), 807-817.
(54) Lin, P.-H.; Tsai, S.-T.; Chang, Y.-C.; Chou, Y.-J.; Yeh, Y.-C. Harnessing split fluorescent proteins in modular protein logic for advanced whole-cell detection. Analytica Chimica Acta 2023, 1275, 341593.
(55) Hutcheson, S. W.; Bretz, J.; Sussan, T.; Jin, S.; Pak, K. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. Journal of Bacteriology 2001, 183 (19), 5589-5598.
(56) Luisi, B.; Hegab, R.; Person, C.; Seo, K.; Gleason, J. Engineered biosensors in an encapsulated and deployable system for environmental chemical detection. ACS sensors 2022, 7 (9), 2589-2596.
(57) Liu, Q.; Schumacher, J. r.; Wan, X.; Lou, C.; Wang, B. Orthogonality and burdens of heterologous AND gate gene circuits in E. coli. ACS synthetic biology 2018, 7 (2), 553-564.
(58) Shis, D. L.; Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proceedings of the National Academy of Sciences 2013, 110 (13), 5028-5033.
(59) Barger, N.; Oren, I.; Li, X.; Habib, M.; Daniel, R. A whole-cell bacterial biosensor for blood markers detection in urine. ACS Synthetic Biology 2021, 10 (5), 1132-1142.
(60) Feng, S.; Varshney, A.; Coto Villa, D.; Modavi, C.; Kohler, J.; Farah, F.; Zhou, S.; Ali, N.; Müller, J. D.; Van Hoven, M. K. Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Communications biology 2019, 2 (1), 344.
(61) Zakeri, B.; Fierer, J. O.; Celik, E.; Chittock, E. C.; Schwarz-Linek, U.; Moy, V. T.; Howarth, M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences 2012, 109 (12), E690-E697.
(62) Yu, S.; Sun, H.; Li, Y.; Wei, S.; Xu, J.; Liu, J. Hydrogels as promising platforms for engineered living bacteria-mediated therapeutic systems. Materials today bio 2022, 16, 100435.
(63) Qi, X.; Simsek, S.; Chen, B.; Rao, J. Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules 2020, 165, 1675-1685.
(64) Li, Y.; Feng, C.; Li, J.; Mu, Y.; Liu, Y.; Kong, M.; Cheng, X.; Chen, X. Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. International journal of biological macromolecules 2017, 105, 924-930.
(65) Yousefi, M.; Khanniri, E.; Khorshidian, N.; Sohrabvandi, S.; Mortazavian, A. M. Development of probiotic apple juice using encapsulated probiotics in xanthan-chitosan based hydrogels. Applied Food Biotechnology 2023, 10 (3), 205-213.
(66) Falco, C. Y.; Falkman, P.; Risbo, J.; Cárdenas, M.; Medronho, B. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydrate polymers 2017, 172, 175-183.
(67) Mettu, S.; Hathi, Z.; Athukoralalage, S.; Priya, A.; Lam, T. N.; Ong, K. L.; Choudhury, N. R.; Dutta, N. K.; Curvello, R.; Garnier, G. Perspective on constructing cellulose-hydrogel-based gut-like bioreactors for growth and delivery of multiple-strain probiotic bacteria. Journal of Agricultural and Food Chemistry 2021, 69 (17), 4946-4959.
(68) Yang, Y.; Zhang, J.; Li, C. Delivery of probiotics with cellulose-based films and their food applications. Polymers 2024, 16 (6), 794.
(69) Huang, L.; Wang, J.; Kong, L.; Wang, X.; Li, Q.; Zhang, L.; Shi, J.; Duan, J.; Mu, H. ROS-responsive hyaluronic acid hydrogel for targeted delivery of probiotics to relieve colitis. International Journal of Biological Macromolecules 2022, 222, 1476-1486.
(70) Xiao, Y.; Lu, C.; Liu, Y.; Kong, L.; Bai, H.; Mu, H.; Li, Z.; Geng, H.; Duan, J. Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS applied materials & interfaces 2020, 12 (33), 36967-36977.
(71) Patarroyo, J. L.; Florez-Rojas, J. S.; Pradilla, D.; Valderrama-Rincón, J. D.; Cruz, J. C.; Reyes, L. H. Formulation and characterization of gelatin-based hydrogels for the encapsulation of Kluyveromyces lactis—Applications in packed-bed reactors and probiotics delivery in humans. Polymers 2020, 12 (6), 1287.
(72) Gühl, T. Designing hydrogel-based systems for the encapsulation of probiotic bacteria. Johannes Gutenberg-Universität Mainz, 2018.
(73) Tang, T.-C.; Tham, E.; Liu, X.; Yehl, K.; Rovner, A. J.; Yuk, H.; de la Fuente-Nunez, C.; Isaacs, F. J.; Zhao, X.; Lu, T. K. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nature Chemical Biology 2021, 17 (6), 724-731.
(74) Moya-Ramírez, I.; Kotidis, P.; Marbiah, M.; Kim, J.; Kontoravdi, C.; Polizzi, K. Polymer encapsulation of bacterial biosensors enables coculture with mammalian cells. ACS Synthetic Biology 2022, 11 (3), 1303-1312.
(75) Chou, D. D. Gene Deletion Technique from National Taiwan University Department of Life Science Dr. David Chou’s Lab.
(76) Gay, P.; Le Coq, D.; Steinmetz, M.; Ferrari, E.; Hoch, J. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. Journal of bacteriology 1983, 153 (3), 1424-1431.
(77) Steinmetz, M.; Le Coq, D.; Djemia, H. B.; Gay, P. Genetic analysis of sacB, the structural gene of a secreted enzyme, levansucrase of Bacillus subtilis Marburg. Molecular and General Genetics MGG 1983, 191, 138-144.
(78) Liu, Y.; Wan, X.; Wang, B. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nature communications 2019, 10 (1), 3693.
(79) Chen, Y.-J.; Liu, P.; Nielsen, A. A.; Brophy, J. A.; Clancy, K.; Peterson, T.; Voigt, C. A. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature methods 2013, 10 (7), 659-664.
(80) Mei, Z.; Zhang, K.; Qu, G.; Li, J.-K.; Liu, B.; Ma, J.-A.; Tu, R.; Sun, Z. High-throughput fluorescence assay for ketone detection and its applications in enzyme mining and protein engineering. ACS omega 2020, 5 (23), 13588-13594.
(81) Ressmann, A. K.; Schwendenwein, D.; Leonhartsberger, S.; Mihovilovic, M. D.; Bornscheuer, U. T.; Winkler, M.; Rudroff, F. Substrate‐independent high‐throughput assay for the quantification of aldehydes. Advanced Synthesis & Catalysis 2019, 361 (11), 2538-2543.
(82) Kitov, P. I.; Vinals, D. F.; Ng, S.; Tjhung, K. F.; Derda, R. Rapid, hydrolytically stable modification of aldehyde-terminated proteins and phage libraries. Journal of the American Chemical Society 2014, 136 (23), 8149-8152.
(83) Li, N.; Zhou, Q.; Li, K.; Jiang, T.; Yu, X.-Q. Qualitative and quantitative detection of aldehydes in DNA with 2-amino benzamidoxime derivative. Chinese Chemical Letters 2023, 34 (1), 107471.
(84) Sun, J.-Y.; Zhao, X.; Illeperuma, W. R.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly stretchable and tough hydrogels. Nature 2012, 489 (7414), 133-136.
(85) Ming, H.; Yuan, B.; Qu, G.; Sun, Z. Engineering the activity of amine dehydrogenase in the asymmetric reductive amination of hydroxyl ketones. Catalysis Science & Technology 2022, 12 (19), 5952-5960.
(86) Tong, F.; Qin, Z.; Wang, H.; Jiang, Y.; Li, J.; Ming, H.; Qu, G.; Xiao, Y.; Sun, Z. Biosynthesis of chiral amino alcohols via an engineered amine dehydrogenase in E. coli. Frontiers in Bioengineering and Biotechnology 2022, 9, 778584.