簡易檢索 / 詳目顯示

研究生: 賴信吉
Lai, Xin-Ji
論文名稱: 數位全像顯微術解析度提升之研究
Studies on Resolution Enhancement in Digital Holographic Microscopy
指導教授: 鄭超仁
Cheng, Chau-Jern
杜翰艷
Tu, Han-Yen
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 數位全像顯微術解析度提升切趾法電腦全像像差補償編碼孔徑成像
英文關鍵詞: digital holography, microscopy, resolution enhancement, apodization, computer holography, aberration compensation, coded aperture imaging
DOI URL: http://doi.org/10.6345/DIS.NTNU.EPST.003.2018.E08
論文種類: 學術論文
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位全像顯微術在照明光源正向入射下所形成的空間頻率響應,係由入射光源的波長,以及光學元件的有限孔徑大小所決定,並且,該空間頻率截止的最大值將會受限於光學繞射極限的二分之一波長,因此,本論文提出數種以合成孔徑方法為基礎的光學多工技術來提供不同角度的斜向入射,這將可拓展光學系統的空間頻率涵蓋範圍,同時實現橫向分辨率的解析度提升,藉以應用於量測奈米結構樣本與未染色的活體生物細胞。 首先,本研究工作在合成孔徑式的數位全像顯微術之中,提出了可調式反切趾窗型函數來抑制不同角度入射光波的頻譜堆疊所引發的低頻擴張,並藉此訊號處理方法達成頻譜歸一化以還原合成頻譜的高頻訊號,相較於使用高速掃瞄振鏡與攝像機的合成孔徑方法,本研究可拍攝少張不同角度入射光波並配合反切趾窗型函數於實現未染色活體生物細胞的解析度提升成像。 接著,為實現光學多工式的合成孔徑數位全像顯微術,我們提出了使用角度-偏振多工的光學定址式解析度提升成像,此方法可透過二值化相位光柵來達成角度多工的入射光波,並配合偏振調制以產生彼此正交的線性偏振態光波,相對於傳統機械式掃瞄振鏡方法,以液晶空間光調制器為主的光學定址式解析度提升成像方法,將可提升全像片的訊息容量以同時記錄兩道光波資訊並可免除機械式的擾動。 再者,為建構緊密的光學掃瞄系統配置,以及探討不同角度入射光波的光學像差對於合成孔徑的解析度提升成像之影響,我們提出了使用液晶空間光調制器來減少遠焦成像系統所需的光學透鏡組,並輸出相位式菲涅耳透鏡與閃耀光柵所結合的電腦全像片來進行光學定址式的角度多工,同時,透過數位全像的波前感測來偵測不同角度入射光波的光學像差種類,最後,該波前感測的光學像差將使用澤尼克多項式繪製,再反饋至液晶空間光調制器以實現光學定址式的光學像差修正。 最後,本研究工作提出使用結構光照明方式以產生相同偏振態、不同角度的入射光波,並配合編碼孔徑實現空間相位移式的結構光成像,同時,使用壓縮感測演算法以恢復該資訊遺失的解碼孔徑區域,以實現單次曝光的解析度提升成像,這將能免除傳統時間多工式結構光照明在相位移上的耗時程序,以及角度-偏振多工方式在量測具非均向性材質與相位延遲樣本的限制。

    The spatial frequency response of digital holographic microscopy at central illumination condition is determined by the wavelength of light source and the finite aperture size of optical components, besides, the maximal spatial frequency cutoff is restricted by the optical diffraction limit to one-half of the wavelength. Therefore, this work proposed several of optical-multiplexing techniques based on the synthetic aperture method to provide oblique illumination at different angles, and thus extend the spatial frequency coverage along with realization of the resolution enhancement on the lateral resolution for applications on measure nanostructures and unlabeled biological living cell. First, this research work purposed an adjustable inverse apodization window function to suppress the low-frequency expansion from spectrum overlapping with different angle of incidence waves, and thus perform the spectrum normalization for revealing high-frequency signal of synthetic spectrum in the synthetic aperture digital holographic microscopy. In comparison to high speed galvo-mirror and camera based synthetic aperture method, purposed method is capable of realizing resolution enhanced imaging of label-free living cell by a few different angle of incidence waves with the inverse apodization window function. Then, to realize the optical-multiplexing technique in synthetic aperture digital holographic microscopy, we proposed the angular-polarized multiplexing with optical addressing resolution enhanced imaging. This method employed the binary phase grating to perform the angular-multiplexed illumination wave and the polarization modulation with orthogonally linear polarization state. In comparison to tradition mechanical galvo-mirror based method, the spatial light modulator based optical addressing resolution enhanced imaging method can enlarge the information capacity in the digital hologram and simultaneously record two object wave without mechanical perturbation. In addition, for compacting the optical steering system configuration and analyzing the optical aberration from oblique illumination on influence upon synthetic aperture resolution enhanced imaging. Spatial light modulator is introduced to decrease the usage optical lens set in the 4-f telescope system and display the merged phase Fresnel lens with phase blazed grating for optical addressing angular-multiplexing. In the meantime, through the digital holographic wavefront sensing on different angles of incidence waves, the Zernike polynomial optical aberration model is mapped and display on the spatial light modulator for realizing optical addressing wavefront aberration correction. Finally, we proposed the structured illumination method to generate the same polarization state, different angle of incidence waves and applied the coded aperture to implement the spatial phase shifting structured illumination imaging and the compressive sensing algorithm is used to recover the missing data in the decoded aperture region, and thus perform single-shot resolution enhanced imaging. Then, the time consumed temporally phase shifting structured illumination and the restriction of angular-polarization multiplexing on measure the anisotropic material and phase retardation object can be avoided.

    中文摘要 2 Abstract 4 1. Introduction 6 1.1 Development of Resolution Enhancement in Digital Holography 6 1.2 Outline of the Thesis 23 2. Spectrum Normalization Technique 25 2.1 Development of Synthetic Aperture 25 2.1.1 Data Acquisition 27 2.1.2 Numerical Processing 28 2.2 Spectrum Normalization for Spatial Frequency Overlapping 29 2.2.1 Apodization Window Function 29 2.2.2 Simulation Results 31 2.3 Resolution Enhanced Imaging of Label-Free Living Cell 34 2.3.1 Experimental Results 37 2.3.2 Discussions 40 3. Angular-Polarization Multiplexing Technique 41 3.1 Development of Angular-Polarization Multiplexing 41 3.1.1 Binary Phase Grating for Beam Deflection 43 3.1.2 Phase Retarder for Orthogonal Polarization 45 3.2 Experimental Setup 49 3.3 Single-Shot Resolution Enhanced Imaging by Orthogonal Polarization 54 3.3.1 Experimental Results 54 3.3.2 Discussions 57 4. Lensless Steering with Wavefront Compensation Technique 58 4.1 Development of Lensless Steering with Wavefront Compensation 58 4.1.1 Lensless Steering by Computer Generated Hologram 60 4.1.2 Wavefront Mapping by Polynomial Zernike Aberration model 63 4.2 Experimental Setup 65 4.3 Isotropic Resolution Enhanced Imaging of Star Target 68 4.3.1 Experimental Results 68 4.3.2 Discussions 72 5. Coded Aperture Structured Illumination Technique 74 5.1 Development of Structured Illumination 74 5.1.1 Blazed Binary Phase Grating for Structured Illumination 76 5.1.2 Spatial Phase Shifting by Coded Phase Aperture 78 5.2 Experimental Setup 79 5.3 Resolution Enhanced Imaging by Coded Aperture Structured Illumination 80 5.3.1 Experimental Results 80 5.3.2 Discussions 85 5.4 A Comparison of Optical-Multiplexing Techniques 85 6. Summary and Future Works 88 6.1 Summary 88 6.2 Future Works 90 Appendix 93 I Structured illumination operation 94 II Compressive sensing operation 95 References 97 Journal Papers 108 Conference Papers 110 Patents 112

    References
    1. U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications (Springer-Verlag Berlin Heidelberg, 2015).
    2. T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University Press, 2014).
    3. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques and Applications (Springer-Verlag New York, 2011).
    4. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer-Verlag Berlin Heidelberg, 2011).
    5. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2013).
    6. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
    7. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. mikrosk. Anat. Entwichlungsmech 9, 413-468 (1873).
    8. E. Hecht, Optics (Addison Wesley, 1998).
    9. D. Claus, and D. Iliescu, “Optical parameters and space-bandwidth product optimization in digital holographic microscopy,” Appl. Opt. 52(1), A410-A422 (2013).
    10. E. Abbe and H. Fripp, “A contribution to the theory of the microscope, and the nature of microscopic vision,” Proceedings of the Bristol Naturalists' Society, new series 1, 200-261 (1874).
    11. H. Köhler, “On Abbe's theory of image formation in the microscope,” Optica Acta 28, 1691‐1701 (1981).
    12. J. W. S. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philosophical Magazine 8, (1879).
    13. J. W. S. Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philosophical Magazine 42, 167-195 (1896).
    14. J. W. S. Rayleigh, “VII - On the theory of optical images, with special reference to the microscope,” Journal of the Royal Microscopical Society, 447-473 (1903a).
    15. J. W. S. Rayleigh, “VIII -On the theory of optical images, with special reference to the microscope (Supplementary paper),” Journal of the Royal Microscopical Society, 474-482(1903b).
    16. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113-117 (2013).
    17. Y. Cotte, M. F. Toy, and C. Depeursinge, “Beyond the lateral resolution limit by phase imaging,” J. Biomed. Opt. 16(10), 106007 (2011).
    18. Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields,” Opt. Express 18(19), 19462-19478 (2010).
    19. Y. Cotte, F. M. Toy, C. Arfire, S. S. Kou, D. Boss, I. Bergoënd, and C. Depeursinge, “Realistic 3D coherent transfer function inverse filtering of complex fields,” Biomed. Opt. Express 2(8), 2216-2230 (2011).
    20. C. J. R. Sheppard, “Resolution and super-resolution,” Microsc Res.Tech. 80,590-598 (2017).
    21. S. Chowdury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Structured illumination microscopy for dualmodality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction,” Biomedical Opt. Express 8(12), 5776-5793 (2017).
    22. S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Structured illumination multimodal 3D resolved quantitative phase and fluorescence sub-diffraction microscopy,” Biomedical Opt. Express 8(5), 2496-2518 (2017).
    23. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. I,” J. Opt. Soc. Am. 56, 1463-1472 (1966).
    24. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932-941 (1967).
    25. M. Kim, Y. Choi, C. F. Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36(2), 148-150 (2011).
    26. V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light: Science & Applications 5, e16142 (2016).
    27. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photon. 7, 739–745 (2013).
    28. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827-835 (2016).
    29. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266-277 (2009).
    30. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271-14276 (2008).
    31. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780-782 (1994).
    32. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642-1645 (2006).
    33. B. P. Cormack, G. Bertram, M. Egerton, N. A. Gow, S. Falkow, and A. J. Brown, “Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans,” Microbiology 143(Pt 2), 303-311 (1997).
    34. D. T. Ross, U. Scherf, M. B. Eisen, C. M. Perou, C. Rees, P. Spellman, V. Iyer, S. S. Jeffrey, M. Van de Rijn, M. Waltham, A. Pergamenschikov, J. C. Lee, D. Lashkari, D. Shalon, T. G. Myers, J. N. Weinstein, D. Botstein, and P. O. Brown, “Systematic variation in gene expression patterns in human cancer cell lines,” Nat. Genet. 24(3), 227-235 (2000).
    35. M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122(2), 366-375 (2002).
    36. R. Rizzuto, M. Brini, P. Pizzo, M. Murgia, and T. Pozzan, “Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells,” Curr. Biol. 5(6), 635-642 (1995).
    37. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303(5660), 1007-1010 (2004).
    38. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet , “Early Cell Death Detection with Digital Holographic Microscopy,” PLoS ONE 7(1), e30912 (2012).
    39. C.-H. Wu , X.-J. Lai, C.-J. Cheng, Y.-C. Yu, and C.-Y. Chang, “Novel applications of digital holographic microscopy in therapeutic evaluation of Chinese herbal medicines,” Appl. Opt. 53(27), G192-G197 (2014).
    40. B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).
    41. P.-Y. Liu, L.-K. Chin, W. Ser, H.-F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T.-C. Ayi, P.-H. Yap, B. Liedberg, K. Wang, T. Bourouina, Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634-644 . (2016).
    42. G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. let. 31(6), 775-777 (2006).
    43. H.-Y. Tu, W.-J. Hsiao, X.-J. Lai, Y.-C. Lin, and C.-J. Cheng, “Synthetic aperture common-path digital holographic microscopy with spiral phase filter,” J. Opt. 19, 065604 (2017).
    44. P. C. Montgomery and A. Leong-Hoi, “Emerging optical nanoscopy techniques,” Nanotechnology, Science and Applications 8, 31-44 (2015).
    45. J. R.-Isidro, “Fluorescence nanoscopy. Methods and applications,” J. Chem. Biol. 6(3), 97-120 (2013).
    46. R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Brief Funct. Genomic. Proteomic. 5(4), 289-301 (2006).
    47. X.-J. Lai, H.-Y. Tu, C.-H. Wu, Y.-C. Lin, and C.-J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51-A58 (2015).
    48. X.-J. Lai, C.-J. Cheng, Y.-C. Lin and H.-Y. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19, 055607 (2017).
    49. X.-J. Lai, H.-Y. Tu, Y.-C. Lin, and C.-J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143-1146 (2018).
    50. C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143-3145 (2002).
    51. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179-2181 (2002).
    52. V. Micó, Z. Zalevsky, P. G. Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162-3170 (2006).
    53. V. Micó, Z. Zalevsky, P. G. Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822-828 (2006).
    54. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16(21), 17107-17118 (2008).
    55. V. Micó, J. García and Z. Zalevsky, “Axial superresolution by synthetic aperture generation,” J. Opt. A: Pure Appl. Opt. 10, 125001 (2008).
    56. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16(23), 19260-19270 (2008).
    57. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873-7892 (2009).
    58. J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631-3638 (2010).
    59. H. Y. Li, L. Y. Zhong, Z. J. Ma, and X. X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268-2272 (2011).
    60. Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36(21), 4263-4265 (2011).
    61. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17(2), 026003 (2012).
    62. Y.-C. Lin, H.-Y. Tu, X.-R. Wu, X.-J. Lai, and C.-J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26(10), 12620-12631 (2018).
    63. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet and Ch. Depeursinge, “Shot noise influence in reconstructed phase image SNR in digital holographic microscopy,” Appl. Opt. 45, 7667-7673 (2006).
    64. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15(14), 8818-8831 (2007).
    65. Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
    66. L. Tian, Z. Liu, L. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2(10), 904-911 (2015).
    67. C. Kuang, Y. Ma, R. Zhou, J. Lee, G. Barbastathis, R. R. Dasari, Z. Yaqoob, and P. T. C. So, “Digital micromirror device-based laser-illumination Fourier ptychographic microscopy,” Opt. Express 23(21), 26999-27010 (2015).
    68. L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
    69. C. J. Yuan, H. C. Zhai, and H. T. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33(20), 2356-2358 (2008).
    70. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).
    71. C. J. Yuan, G. H. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50(7), B6-B11 (2011).
    72. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12(26), 6403-6409 (2004).
    73. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169-175 (2002).
    74. J. C. Lee, H.-Y. Tu, W.-C. Yeh, J. B. Gui, and C.-J. Cheng, “Holographic three-dimensional display and hologram calculation based on liquid crystal on silicon device,” Appl. Opt. 53(27), G222-G231 (2014).
    75. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14(18), 8013-8018 (2006).
    76. Márquez, C. Iemmi, J. Campos, J. Escalera, and M. Yzuel, “Programmable apodizer to compensate chromatic aberration effects using a liquid crystal spatial light modulator,” Opt. Express 13(3), 716-730 (2005).
    77. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCoS spatial light modulators: Trends and applications,” Wiley-VCH, 1-30 (2012).
    78. P.-C. Yeh, and C. Gu, Optics of Liquid Crystal Displays (Wiley Series in Pure and Applied Optics, 2009)
    79. S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express 21(11), 12987-12995 (2013).
    80. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express 21(18), 21198-21207 (2013).
    81. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16(21), 16711-16722 (2008).
    82. Lizana, N. Martín, M. Estapé, E. Fernández, I. Moreno, A. Márquez, and M. J. Yzuel, “Influence of the incident angle in the performance of Liquid Crystal on Silicon displays,” Opt. Express 17(10), 8491-8505 (2009).
    83. W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light: Science & Applications 4, e261 (2015).
    84. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase shifting digital lensless Fourier holography,” Opt. Express 17(17), 15008-15022 (2009).
    85. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49(5), 845-857 (2010).
    86. V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms” Opt. Express 22(19), 22328-22339 (2014).
    87. V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavib, and P. Ferraroa “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15, 2117-2124 (2015).
    88. A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Scientific Reports 3, 1717 (2013)
    89. E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip 13(11), 2028-2035 (2013).
    90. J. Song, C. L. Swisher, H. Im, S. Jeong, D Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-based pixel super resolution for lens-free digital in-line holography,” Scientific Reports 6, 24681 (2016).
    91. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25(22), 1630-1632 (2000).
    92. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300-4306 (2006).
    93. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851-863 (2006).
    94. F. Montfort, F. Charrière, T. Colomb, E, Cuche, P, Marquet, and C. Depeursinge “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23(11), 2944-2953 (2006).
    95. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177-3190 (2006).
    96. T. Nguyen, V. Bui, V. Lam, C. B. Raub, L. C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25(13), 15043-15057 (2017).
    97. K. W. Seo, Y. S. Choi, E. S. Seo, and S. J. Lee, “Aberration compensation for objective phase curvature in phase holographic microscopy,” Opt. Lett. 37(23), 4976-4978 (2012).
    98. W. J. Zhou, Y. J. Yu, and A. Asundi, “Study on aberration suppressing methods in digital micro-holography,” Optics and Lasers in Engineering 47, 264-270 (2009).
    99. C. Zuo, Q. Chen, W. J. Qu, and A. Asundi “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10), 1724-1726 (2013).
    100. D. N. Deng, J. Z. Peng, W. J. Qu, Y. Wu, X. L. Liu, W. Q. He, and X. Peng, “Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens,” Appl. Opt. 56(21), 6007-6014 (2017).
    101. I. Y. Choi, K. R. Lee, and Y. K. Park, “Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration,” Opt. Express 25(24), 30771-30779 (2017).
    102. C. Maurer, A. Jesacher, S. Bernet, and M. R. Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81-101 (2011).
    103. H. Liu, J. Bailleul, B. Simon, M. Debailleul, B. Colicchio, and O. Haeberlé, “Tomographic diffractive microscopy and multiview profilometry with flexible aberration correction,” Appl. Opt. 53(4), 748-755 (2014).
    104. M. Booth, D. Andrade, D. Burke, B. Patton, and M. Zurauskas, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64(4), 251-261 (2015).
    105. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller and C. H. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68-71 (2016).
    106. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses,” SPIE 2412, 147-156 (1995).
    107. J. Demmerle, C. Innocent, A. J North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nature Protocols 12, 988-1010 (2017).
    108. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42 999-1002 (2017).
    109. S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Refractive index tomography with structured Illumination,” Optica 4(5), 537-545 (2017).
    110. L.-H. Yeh, L. Tian, and L. Waller, “Structured illumination microscopy with unknown patterns and a statistical prior,” Biomedical Optics Express 8, 695-711 (2017).
    111. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
    112. B. Bailey, V. Krishnamurthi, D. L. Farkas, D. L. Taylor, and F. Lanni, “Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy,” Proc. SPIE 2184, 208-213 (1994).
    113. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A 26, 413-423 (2009).
    114. E. S. Ortiga, M. M. Corral, G. Saavedra, and J. G. Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39, 2086-2089 (2014).
    115. S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015-1018 (2014).
    116. J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photon. Res. 2, 87-91 (2014).
    117. Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, “Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination,” Opt. Lett. 41, 1558-1561 (2016).
    118. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive Holography,” Opt. Express 17(15), 13040-13049 (2009)
    119. R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37, 2013-2015 (2012).
    120. Y. Rivenson and A. Stern, “Conditions for practicing compressive Fresnel holography,” Opt. Lett. 36, 3365-3367 (2011).
    121. J. Song, C. L. Swisher, H. Im, S. Jeong, D Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-based pixel super resolution for lens-free digital in-line holography,” Scientific Reports 6, 24681 (2016).
    122. R. Horisaki, T. Kojima K. Matsushima, and J. Tanida, “Subpixel reconstruction for single-shot phase imaging with coded diffraction,” Appl. Opt. 56, 7642-7647 (2017).
    123. Y.-C. Lin, C.-J. Cheng, and L.-C. Lin, “Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events,” Opt. Lett. 42, 2082-2085 (2017).
    124. M. R. Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42, 3992-3995 (2017).
    125. Chambolle, “An Algorithm for Total Variation Minimization and Applications,” J. Math. Imaging Vis. 20, 89-97 (2004).
    126. J. Bioucas Dias and M. Figueiredo, “A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration,” IEEE Trans. Image Process. 16, 2992-3004 (2007).
    127. Vinoth B., X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Scientific Reports 8, 5943 (2018).

    Journal Papers
    1. Y.-C. Lin, Y.-T. Lee, X.-J. Lai, C.-J. Cheng, and H.-Y. Tu “In situ Mapping of Light-induced Refractive Index Gratings by Digital Holographic Microscopy,” Jpn. J. Appl. Phys 49, 10251 (2010).
    2. H.-Y. Tu, X.-J. Lai, C.-J. Cheng, and L.-C. Lin, “Color Reproduction of Multi-wavelength digital holography using a color correction algorithm,” Jpn. J. Appl. Phys. 50, 060207 (2011).
    3. L.-C. Lin, H.-Y. Tu, X.-J. Lai, Y.-L. Huang, and C.-J. Cheng, “Color correction for chromatic distortion in a multi-wavelength digital holographic system,” J. Opt. 13, 055401 (2011).
    4. L.-C. Lin, H.-Y. Tu, X.-J. Lai, S.-S. Wang, and C.-J. Cheng, “Fluid surface compensation in digital holographic microscopy for topography measurement,” J. Mod. Optic 59(11), 992-1001 (2012).
    5. C.-J. Cheng, W.-J. Hwang, C.-T. Chen, and X.-J. Lai, “Efficient FPGA-based Fresnel transform architecture for digital holography,” J. Disp. Technol. 10(4), 272-281 (2014).
    6. C.-H. Wu, X.-J. Lai, C.-J. Cheng, Y.-C. Yu, and C.-Y. Chang, “Novel applications of digital holographic microscopy in therapeutic evaluation of Chinese herbal medicines,” Appl. Opt. 53(27), G192-G197 (2014).
    7. X.-J. Lai, H.-Y. Tu, C.-H. Wu, Y.-C. Lin, and C.-J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51-A58 (2015).
    8. X.-J. Lai, C.-J. Cheng, Y.-C. Lin, and H.-Y. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19, 055607 (2017).
    9. H.-Y. Tu, W.-J. Hsiao, X.-J. Lai, Y.-C. Lin, and C.-J. Cheng, “Synthetic aperture common-path digital holographic microscopy with spiral phase filter,” J. Opt. 19, 065604 (2017).
    10. X.-J. Lai, H.-Y. Tu, Y.-C. Lin, and C.-J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143-1146 (2018).
    11. Vinoth B., X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Scientific Reports 8, 5943 (2018).
    12. Y.-C. Lin, H.-Y. Tu, X.-R. Wu, X.-J. Lai, and C-J Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26(10), 12620-12631 (2018).

    Conference Papers
    1. X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Coded structured illumination with compressive sensing for resolution enhancement in digital holographic microscopy,” Optics & Photonics Taiwan International Conference 2017 (OPTIC2017), Kaohsiung, Taiwan, 2017.
    2. X.-J. Lai, Y.-C. Lin, and C.-J. Cheng, “Low-frequency moiré fringes synthesize by mutual correlation for resolution enhancement in structured illumination digital holographic microscopy,” Digital Holography & 3-D Imaging (DH2017), Jeju Island, South Korea, 2017.
    3. X.-J. Lai, W.-J. Hsiao, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Synthetic aperture common-path digital holographic microscopy based on spiral phase filter,” International Workshop on Holography and related technologies (IWH2016), Jiaoxi, Yilan, Taiwan. [Student Paper Award]
    4. X.-J. Lai, H.-Y. Tu, and C.-J. Cheng, “Resolution enhancement of digital holographic microscopy based on structured-illumination induced moiré fringes,” International Workshop on Holography and related technologies (IWH2016), Jiaoxi, Yilan, Taiwan.
    5. X.-J. Lai, H.-Y. Tu, Y.-C. Lin, and C.-J. Cheng, “Structured illumination induced moiré fringes for resolution enhancement in digital holographic microscopy,” Digital Holography & 3-D Imaging (DH2016), Heidelberg, Germany, 2016.
    6. X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Resolution enhancement by structured-illumination induced moiré effect in digital holographic microscopy,” Optics & Photonics Taiwan International Conference 2015 (OPTIC2015), Hsinchu, Taiwan, 2015.
    7. X.-J. Lai, H.-Y. Tu, Y.-C. Lin, and C.-J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators in digital holographic microscopy,” Optics & Photonics Taiwan, International Conference Taiwan 2014 (OPTIC2014), Taipei, Taiwan, 2014. X.-J. Lai, C.-J. Cheng, H.-Y. Tu, and L.-C. Lin, “Resolution enhancement in synthetic aperture digital holographic microscopy,” OSA Imaging and Applied Optics Congress: Topical Meeting on Digital Holography and Three-dimensional Imaging (DH2014), Seattle, USA, 2014.
    8. X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Superresolution Imaging in Scanning Synthetic Aperture Digital Holographic Microscopy,” Optics & Photonics Taiwan International Conference 2013 (OPTIC2013), Chung-Li, Taiwan, 2013. [Student Paper Award]
    9. X.-J. Lai, Y.-L. Lee, H.-Y. Tu, and C.-J. Cheng, “Scanning synthetic aperture for all-in-one digital holographic microscopy,” Optics & Photonics Taiwan, International Conference (OPTIC2012), Taipei, Taiwan, 2012.
    10. X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Beam-rotation tomographic imaging of digital holographic microscopy,” International Photonics Conference (IPC2011), Tainan, Taiwan, 2011.
    11. X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Multimodality imaging of digital holographic microscopy,” The 30th Progress In Electromagnetics Research Symposium (PIERS2011), Suzhuo, China, 2011.

    Patents
    1. 鄭超仁,林昱志,賴信吉,影像處理方法,中華民國發明專利:證書號I537876(2016年06月11日)。
    2. 鄭超仁,劉晉宇,賴信吉,透明基板之瑕疵檢測方法與裝置,中華民國發明專利:申請號106100291(2017年01月05日)。

    無法下載圖示 本全文未授權公開
    QR CODE